a2 United States Patent

Lee et al.

US009424167B2

US 9,424,167 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATED TESTING OF AN
APPLICATION SYSTEM

(71) Applicant: CGI TECHNOLOGIES AND
SOLUTIONS INC.,, Fairfax, VA (US)
(72) Inventors: Christopher Stephen Lee, Lantana, TX
(US); Michael William Monark,
Centennial, CO (US); Karen Lynn
Thomas, Aurora, CO (US); Wesley
Edsel Murphree, Bessemer, AL (US);
Kristin Leigh Baca, Thornton, CO (US)
(73) Assignee: CGI TECHNOLOGIES AND
SOLUTIONS INC.,, Fairfax, VA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 14/719,137
(22) Filed: May 21, 2015
(65) Prior Publication Data
US 2015/0339213 Al Nov. 26, 2015
Related U.S. Application Data
(60) Provisional application No. 62/001,501, filed on May
21, 2014.
(51) Imt.ClL
GO6F 1136 (2006.01)
GO6F 3/0484 (2013.01)
GO6F 9/44 (2006.01)
GO6F 3/0482 (2013.01)
GO6F 3/0485 (2013.01)
(52) US.CL
CPC GO6F 11/3664 (2013.01); GOGF 3/0482

(2013.01); GOGF 3/0484 (2013.01); GO6F
3/0485 (2013.01); GO6F 3/04842 (2013.01);
GO6F 11/3672 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7451455 B1* 11/2008 El-Haj GOGF 11/3664
707/999.003
7,870,504 Bl 1/2011 Mclntosh et al.
7,881,491 B2 2/2011 Mizrachi
8,170,371 B2 5/2012 Zuev et al.
8,171,391 B2 5/2012 Zuev et al.
(Continued)
OTHER PUBLICATIONS

Website Description “TestPlant: Knowledge Base,” retrieved on May
21, 2015, available at TestPlant Documentation website: http://docs.
testplant.com/PDFs.zip; 25 pages.

(Continued)

Primary Examiner — Daxin Wu
(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

(57) ABSTRACT

A system for automatically testing an application system
graphical user interface (GUI) includes first and second appli-
cation servers communicatively connected across a commu-
nication network. The second application server retrieves a
GUI page provided by the first application server as part of the
application system, and identifies text elements and user input
objects in an image of the retrieved GUI page. Each user input
object is then associated with a text element. Test parameter
values are retrieved from a database storing test parameter
data, and the application system is tested. In particular, for
each user input object of the GUI page, a respective test
parameter value is provided that is associated in the database
with a same text element as is associated with the user input
object. A response of the application system is then moni-
tored.

17 Claims, 23 Drawing Sheets

/{ 226
4 201 Analyze layout
templates if
—5| OCRscanto available for the
identify alt text Interface
205 A 209
Object learning 223
Determine unique /{ 211 /{ 213
logical names for Determine
il objects 207 . .
8 Determine object Capture current Interface
types state of all objects Logical Name
Map OCR text to
203 found objects 215 e
Capture images, |dentify required
Object scan to coordinates or fields by OCR or
identify all objects location strategy image analysis of
for alf known the required
objects marker
218 \y_‘——\y 221
Open and record values Scroll, open and scroll
from lists, combos, and objects, expand
objects with text values accordions and trees,
for selection inside and capture OCR values

US 9,424,167 B2

Page 2
(56) References Cited 2013/0182949 A9* 7/2013 Pankratius GOG6F 17/3089
382/165
U.S. PATENT DOCUMENTS 2014/0208222 Al* 7/2014 Simons ... GOG6F 9/4445
715/740
8,233,714 B2 7/2012 Zuev et al. 2014/0325484 Al* 10/2014 Gillaspie GOGF 11/3684
8,260,049 B2 9/2012 Deryagin et al. 717/124
8,290,272 B2 10/2012 Filimonova et al. 2015/0095352 Al* 4/2015 Lacey GOGF 17/30011
8,295,590 B2 10/2012 Filimonova et al. 707/752
® ;
8,429,612 B2* 4/2013 Milov ...cceeeuee. GO6F ;1/53/383 OTHER PUBLICATIONS
g’gig’igé g% * }8;38}% i};ﬁfc‘iﬁl' GOGF 11/3668 Product Manual “TestPlant: Using eggPlant Functional,” retrieved on
T Tm T A 717/124 May 21, 2015, available at TestPlant Documentation website: http://
8,571,262 B2 10/2013 Zuev etal. docs.testplant.com/PDFs.zip; 31 pages.
8571.264 B2 10/2013 Anisimovich et al. Product Description “Perfecto mobile: MobileCloud Automation”
2()()3/6 13 fzg() Al* 7/2003 Weinberg GO6F 11/3688 retrieved on May 21, 2015, http://www.perfectomobile.com/sites/
714/46 default/files/images/content-indexible/mobilecloud-test-automa-
2005/0268171 Al* 12/2005 Houseccoecc. GOGF 11/2273 tion-ds.pdf; 2 pages.
714/32 Product Description, “ATRT Test Manager _ QA Testing Tools__
2009/0217302 Al* 82009 Grechanik GOG6F 8/70 Innovative Defense Technologies” retrieved on May 21, 2015; avail-
719/320 able at http://idtus.com/products/atrt-test-manager; 3 pages.
2009/0271386 Al* 10/2009 Milov GO6F 11/3692
2009/0273597 Al 11/2009 Chatambealli et al. * cited by examiner

U.S. Patent Aug. 23,2016 Sheet 1 of 23 US 9,424,167 B2

FIG. 1A 105
Communication
Network(s)
Test Server 1103 (" Application Server A 107
101 ST ~ [4109
(Automation TOOO//{ Application System //{
| 110 Under Test
WV
Interface (GUI page j
repository enerator
~ < 111 2
(Test parameter d GUI ipput
database] 113 L\ receiver)
Test Case W] - /
Repository | 114
Test Case d
Datasets
N < 115
Test Case Y
9 Output Data)

US 9,424,167 B2

Sheet 2 of 23

Aug. 23, 2016

U.S. Patent

Jonieg uoneolddy SyL

Js8] J8puy,
uoneljddy

601

Jsal 1epun
uoneoyddy | |

~ Jouueos
| eoepe)

601

Buousy
Jabeuepy uonoaxy ;
pue Buynpayog - ‘
sobBeuepy aseoisa] - ~ S|oo] juswebeueyy \ i
eubissg asesisel « SOINIES 1s8] 0] siinsey 10 Bunss} jenuep
1obeuBy OLBUSIS « 1894 SV1 Bulpoday [euondo

Jabeueiy eleqisel . .
1aBeuepy soepsjul .
uoneinbyuoy .

gl "Old

US 9,424,167 B2

Sheet 3 of 23

Aug. 23, 2016

U.S. Patent

sanjeA YOO ainded pue
‘S93J) pue suoipiodoe

puedxa ‘sjoalqo

[[0Jos pue uado ‘[joiog

apisul uonoses 10}
sonjeA 1xa] UM s}oafqo
pue ‘SOQUIOD ‘S}SI| WO}
senjeA pioodas pue uadp

A

AN ezt

awepN |eos1607
aoepau|
aulwsle

ezzt”

Jayiew
paiinbai ay}
Jo sisAjeue abeuw
10 YO0 Aq spiay
palinbai Ajnuap|

syo9lgo
umouy [|e 1o}
ABajelis uoneoso]
10 s9)eulplood
‘sebewl ainyde)

nzt”

szt

s109(qo |je jo a1els
juauno ainyde)

sadf}
109lgo suluslag

ezl

nzt”

Buiultes) 198lqoO

v

m_l s1098lgo punoy
0} X&) YOO den

sj03(qo |le fnusp
0} ueos 199(qO

oz’

L0zt

aoepalU|

3y} Joj ajqejieae
JI sajejdwia)

noAe| azAjeuy

szt

sozl”

sjoafqo e
10} saweu |eaiboj
anbiun aujwB}aQ

sozt”

xa} ||e Ausp!
0} UBJS DO

pd

Loz

V¢ "Old

US 9,424,167 B2

Sheet 4 of 23

Aug. 23, 2016

U.S. Patent

uoneasd 1s9)

1o} QY1 JO slasn 0}

ajgejieAe Aloyisoday
aoeuaU| e

Rz4d

xdd

(SV1) waishs
uonewojny 1sa |
0} OJul Moeq ssed

1X3) pue sjoalqo
umouMun o} syuij uopisod
BAIejaJ 24018 pue Aluapi

sez [

RxAd

sjoalgo pue ejep
aoBLIBIUI |[e pI0daYy

spub/sajqe} eyep
pue sjojjuod xajdwoo jo
sauepuNog pue ‘ainjonys
‘Uoijedso} suluale(]

A d

sjoalgo umouyun Ayyuspj

ezt

g¢ "Old

US 9,424,167 B2

Sheet 5 of 23

Aug. 23, 2016

U.S. Patent

5.2 7

oul

aoeIBlU| paules)
uonnoaxe pue

‘003 ‘Ql p40d9Yy

awl} uonnoaxa
1e punoj sjo3{qo 1o
X8} Mau sulwisleQ

ezl

idd

3|aIsIA
J1 10SIND SN2}
U} JO UONEDO] BY}
Kinuap! pue xoei|

69z "]

sabeuwl 1o} sisAjeue
ofjes oppwo

L9z}

ejep
laynuep| ainde)n

uonenojes
uonisod aAnejey

soz [

¥DO0 pue Ajuo ixs}
S1 903 JI sulwiLlag

os)i

sozl”

uone|nojeo

(003) sbueyn
o Jajusoidy

ad

pajoadxs se
indui Bunyjey si woysAs
ainsua 0] adAj yoalqo
Aq Aynioe Musp

(Q1) eyeq soepaU|

uonenojeo

erdd

ueos Buiules|
Joud ou yym siasn
Aq paplodal Ajjesiboj
sjo08lqo pue ‘sabeuw
‘1X8} 1o} uedS

auwll} UoiNoaxa
1B 1x3] pue s}oalqo
pajoadxa pul4

Rrdd

14

pabueyo
sel 9oepalU|
usym Ajpusp|

erdd

O¢ "Old

US 9,424,167 B2

Sheet 6 of 23

Aug. 23, 2016

U.S. Patent

SV 8y} Jo siesn 0}
s}jnsal }$8} pue ojul
aoeylaju| palinboe
M3U (e Jussald

62

SUONBOIIISA UoNoaxa Jsod
10 's}109j0p |enuajod ‘1xa)
pue sjo8lgo mau ainjded 0}
703 pue q| sseooud 1s0d

SV1 01 joeq
s)insai puss

SUONBOILIBA
g uonnoaxa jsod
paiinbal syepdn

sda)s
<] JO sSnje)ls |led [
/ssed alepdn

96z’

s6zl”

vez |’

ezl

6z N

sdals
AUBA U0 1N220
s|ie} uaym sadAy
uonedyLIaA ajoh)

2)e}S adeLIalu] 0}
Buipioooe suoioe
9ZIUOJYDUAS
pue ‘asned ‘Jiepn

88z

AN

UOIEOLLIOA

YlIIM passaooe

8 1,ued yoiym
spley oy qe

suoloe pue uoloeIBUI 10}
pieoghay 108[go Janooun 0} s}oalqo
pue asno 8|qe||0Jos JO SuoIplodoe
Y}IM JOBRISIUI PUE ||0I0S
SHOID saliepunog pue ainyonis

paules) o} Buipioooe
spubysejge} pue sjouod
x3|dwod yim joeiajuj

o6zl

oszl”

agz|”

18z,

sjuswaiinbai
das yojew
0} ajels i1snipe pue
uolnNoaxa je a)e}s
y8lqo suiwisieg

J]

adAy 10elqo
Aq uonoeisyul

108lqo o}
suleped psulea] M

eszl”

uonoelaUI
uonoe pauleaT

08z [

dc 'ol4

US 9,424,167 B2

Sheet 7 of 23

Aug. 23, 2016

U.S. Patent

BS0E _meﬁcdx SWOH o_mm

G0OE

Jaquinp AILUNoag (L1090

cos —\ . BWEUIasn
ECOE
® wyng :

o) \
LOeLLDN PBITDIY . L0¢

R EET

e

q.0¢e

. $5381pPY SWOH

« Yuig jo a3zg

7 SS3Ippy jlewiy

saljiWe4 % [BNPIAIPU] - JUNOJDY 33B34)

aoejdiajae
aoueinsu| A

~BIUB)SISSY 199 asbesanod
uejd & puid 1oj Alddy
aloj ulean
PO~ i SR 15 PR | “.

- UNEDDY 210D SO R INDMPUL:: Ay

Ve "Old

US 9,424,167 B2

Sheet 8 of 23

Aug. 23, 2016

U.S. Patent

¥
3

CPPIGTEIDY BROIE ¢ ISRIBPY

H)

2
By senippy - sunapey

i
3

Lo susimpy - avsiey
¥
BISSIPLY FU0H SB HWDS B 53
Bt g cosppy el 68 STE 23 5 8 131

. 5s3ippYy Buiew

gy
EEm &

L)
m 3 G g3
H * & i s .
ipraeiE PWYS - TRy DuEBRNCRD © VERNEY DIORY 17 - Feasey skl T ST L Yanappy S

¥

3
b g onaimey - snsappy

3
Sy smappy -+ LesepEy

#ISEAIPDY BUWCH DR L)
o gy ook op

1BQUINN ALINDAS (RIIG5

. SELUPPY FWOH

E
7
KA RARQEG st
. yig jo a1eg

. BWRLIssH

R L suser oo -

L

o4 B 00N 105

¢

rmm:_Ewn_ g |enplalpu

| - Junosay wumm‘.um

g ¢ g « punanay agee

aoUL)SISSY 199

I N— m:m_m e puid _
- i

asejdjayien
A

worg w

| eavpang e o

- ssimey Suwen o

AT SHPDY FCH 5 B

) Ay - ssapey ok oy
- mesgy 9

T wRETY BN £

o Bt O

10295 12205 g

4P LG RARINEY;
£ AR B0 g

{uenng sEeu

g¢ "Olid

U.S. Patent Aug. 23,2016 Sheet 9 of 23 US 9,424,167 B2

FIG. 3C
310

Dashboards - v Projects o - lIsgues ~ Agile v

Current Project

N SE BN SE Requests (SE)

Key: &€ rategory Currently Actie
Recent Projects

B ATSM OCR Prototype (OCR)

BN ATSM Helpdesk (ATSMHD)

lssues PMATSM Defects (ATSM) |

Popular Issue B ATSM Development {ATS Summary

Summary

Calendar WM ATSM CR-37 Sch/Grp (AT
Components View All Projects R
Labels ' 5 \1 311 ‘
FIG. 3G

IT OPERATIONS YOUR INVOICE
T CF YOI MO

YOUR ACCOUNT: 123-455-4566 abeopotiuin

SERVICEADDRESS| ™~ ———— sscstomtions

INVOICE DATE: A
oveowte: O ERATIONS Account Numbe?\

HoWT0Cf YOURACCOUNT: [1234554588 | |
| SERVICE ADDRESS: xvZ, Anytown, usa /.

M, 1 T August ‘

US 9,424,167 B2

Sheet 10 of 23

Aug. 23, 2016

U.S. Patent

| dITT B M o -

GLEL0'Y (uOIRIaN

YOS PRIUEADY

30) Buinoa| sie
nod pnposd s puy
O SpIcsaABy wEY

- emeeseg (k< fez 0[]

1531 BIRPAMSND I53] uissRb3Y B
14~ 153 L ISR 1501 voiesaitey) ¥
Asnbayappedienty 1591 voissaibay T

. " O] QIS

Asey ynoqy Yy WD (UIROBD, Sx,
Sorre Y D URO8I0; pIoMSTRg
SYLCO
“ppew ASnoaasd FARY NOA SUPRIC 0 Horsy dew %
e BYL 50 iplomsseg pew Asnot L} BP0 3 3 deod pu

Gl SENOPURPIV] ‘SRS SIBMID UR UG FEP O} dn 4 Tase; douys O MR g
i YOO EC SEDIPPY HEW-I i NOA LOUNIOS 1531 JLURUSD IR JUNCIOY Uk Bunesd Ag
%0011 QU]
PIRNING PIPBH TO - PIRS ASW0Y
SHN *JPUICIFND BUKLINIDL € LU | FIBWOEND MIL © WR |

0070 x00¥W 1D L s eer

siagesisoy: APWOIEN) Guanioy JBWOENT MK {£1) <-Famon QAQ
() <-ssmmyos
(93 <-summpiey

oy o . 4 y}
" .@w ug ubis ases|d ‘PWODPM

T R R

e
ey [syt Ly | Jeheooy An

0

vw, L35 e RES T
BIOUNYWN ISVO L53L

L9 [5-o5msivel B 19 s [e-ossLys] X HE
dPH HOOL NWOALT MIA MBI oy

gS 197 - APQ SPH WSLY B I L6 IPrs-osnsLvel B el man (eor-oswsLval B E
o So0)

FWOAR MM WPT W4

A ORI 0 TOEZ G001 g EL

ac "olid

US 9,424,167 B2

Sheet 11 of 23

Aug. 23, 2016

U.S. Patent

Wik
Us | v

HILES ! 0000L°TLS

405134 £ 00062°9S

YW TITIEY-Y;

47 gg00L'TLS

81 1 0082°98

3tedwod
N ¢} oapag ™

DIHIOMISYAVIIOSE gon o i Buney

151 nag passegaig Fi:1771:3e}

AHES 4000L TLS

UsSiEd | 49g0§E°9S
SIS03 XEH EnuUy

F

P

Wil
FS[YUD PESET 51500 153

B [pg00L'TLS

UCSisd | 0088'98
3] R3] Uy

Vil
S uo P S

uosi3d : 500GE'9S

SI500 TEH €Uy
Vil

[i} ¥
MLES 7 0000L2LS

q4esiag; Somw.wm

S150D

< > smEont 3y504 40 1NG 1S3

AN RTRTT ATIRT T R TR SR AT A

R4/ 0000L'2LS

UGSIEd: 6 06798

YILE L 40000°0LS

U0SIEd] 4g000'GS

RRCTEE RN -1

RISLERPP L Sy 4 K-

$I1911 20330
TYNNNY

é ynesHAW

3iedwod
N 01129438

DIHdCML YLy TGN
1517 BnuQ paiegaid

0D5CH QOISR GD ML aJueInsu}
siedwol
N M N8R
FZHCHBIONH X

1517 BuQ pedpsig

sy

_ VS H%0CI000G 9TU0E 0D NM _Ilouto.ﬁocT.W cof9t$

N aiedwod

Q1123’8 ™
IHAOH LS L IORH VRRRS ©

1517 Brug paasagaid

uRld 05 TUTURES
NSEH IGUUSD BIRDIM

aleduwon
% 0}109]8g

N

OHACUISELYII083 gonimo i Buney
1517 Brag pavefaig 1eLIRY

0d3 183008 UnesHAW yneaHAN

STUVIIQ NYId STUYVLE3I0 ¥3HYYD

9cl9L3

1wS9LS

65E518

145

WA
ATHINOW

-yied
=INIEIEN

‘uonoall(
aAle|aY

‘usamjag
anje|ey

:UOI}08S.IaU|
NN

3¢ 'Old

US 9,424,167 B2

Sheet 12 of 23

Aug. 23, 2016

U.S. Patent

3% A

ee <

LEE A

LEE A

N
=

% A

_
oee {

<> 5345011

MBS 4400221

© 99062188

SIS0 XEF] [ENUU7

24100002218

anmn,ww

800 e [EhUuY

SiS02
19%00d 40 1N0 "153

AR ORTRTTATRY

TRTTARTITIT AT

241 0g00LTLS

£ 6008E'9%

£ 0g00L°TLS

DS54 08298

4700000018

{ 9:000»mm

= QQOONhN 5

UCSId ! ,068°98

170000L°TLS

00052°98

5318ILONAGIA
TIVNHHY

aieduiod

1hcad w Dugey

1BRD

eduiad

> o1i08Rg o

st Do peliagaid

sny

QO HIHORERITD 03NN BIUBINSUY

sieduios
hS 01 138198

sny
ajueInsu]

363 B

ISRE JIUS T JIBIBM

sieduiod
e 01123188
DHECH LS L O3 s i Buges
150 Bug eI sauen
D4 129908 RIEeHAN yseaHAW

STHVLIIA HVId STHYLIIA H3IPEYO

1p58LS

co€BLS

5sE518

R
| HLHOW

d4€ "Old

US 9,424,167 B2

Sheet 13 of 23

Aug. 23, 2016

U.S. Patent

posnDoy

PeTqeSTqQ

pessaxg

TBALISNON

TeWXON

=dy

SRHTPEIT ISUIAOD
‘xdr urhzxem
IaD%L SNIOY

aybiz
pur wsop wdy
PAACE GUBIUOD

s

L

EUTPEI IZUISD

sy7Er

2EXZ0)
91x34

i€ "OId

HE "Old

US 9,424,167 B2

Sheet 14 of 23

Aug. 23, 2016

U.S. Patent

s ntis €

Lo A D (Weadung plosisey

IPpIOMSERd

W B &
B : SFERIPPY peL-3 7

ST BURING ¥ W |

sFwolsn) Bununiag

YIS pROUEARY
- e 50y Bupioo) wie

34
1521 apaneng 1sag uoissaiBey &) gy

lisnd- 1531 erumkiene JsaL uoissatay ¥
00°T¥S W
L

YD (2 PendS Hlsig- 1091 apusiang 1saL aissessey T s

Lisnbayspupmsiant 1521 vorssabon F1

st asis O

.M.M—..“.MHMM -asay dapd (uspolog puossIRg
xﬁnﬁ."“MHmM r seq PR AJINOIADID FARY NOA $13PI0 Y] JO HPEN d33X pue |
Qig FENORREIUL “SNIEYS SIRPIO UR LD NRP 0F 4N 3G UFIse; doys oy QR 3 AR i
yarain 'eg ISSRIPPY (IMH-T [pm NOA UDHMYOS 353 L DLISUSY 1R WNOTR UG BUNEID Ag A i
KODTT Iecieem '
PR a.m.h” A “JBCIIND BURLIMIE) @ e [RTITD WR R R
voze Sl ’ T —
e ADusisn) Bupsmay APWOIIR) MIN (/1) <-SRis0W GAG
swao v i Awwmhﬂﬁmwm] IS dnoIsyaseD ISaL
: Mm uy :mmm OSEd|d PWOdeM BWEN

M, AW A

Y3DUYNYM ISV IS -
b g Rbreyeeg. . safitepy ousteos

~dS 13 - 1P ORH WELY & R ZE-WD [S-OsinSLYe) B uep on IeornssLes] B TR L 0 Drpc-osrisival B isey e for-oswsivel X 34
dpn ool WwoAT AGIA WT 9 O 500) SHuOM mIIA ¥P3 AN

,MA f asiool afeps adbrg o & ~ 8 .5

re "old

US 9,424,167 B2

Sheet 15 of 23

Aug. 23, 2016

U.S. Patent

Cuavo&oﬁﬂu\w
panuiRuodsia 5
sO$ S €020 1 (O buney

i34 SIWED P SAOL | AsoBazed

f& 6. [29 eao00 . fge 010z ; LO PISERPRY

Mueq aq yues
DU =

AUeIQ 39 el
SLURN o

SSOUPPE [IBLWS PIEA B JBJUS 1SN NOA

SWey@qol

+ SSeIppy jewy

JHueg Bq JUBI g *
NUBKG 3q JUED FWEN -

iSpay BUIMOIIO) U] YIIM SWRIGOId oM BBy L

poaRE Bujoy oy }onpoad s pougiyon sioue T |

PNpoid M3aN

oy utlis

B 5 OR—

(M) wof |

S |

cweBe A1 yoiew 1ou op uanB
UORLUHRUOT PIOMSSEU DUR STy JOSH St} Q
isdooyp

TRN0008 0K S50008 LU8T

P I I00 [y Bseal JsieIeq NAL -

! w (paambai) 1xa1 «

! b‘vwvu;:gumﬂﬁ m - IsHeleQ 1%aL ¢

ul paubis Aeig [#] (pambey) 1y, *
| e ,.muﬁhgwmma E S IspEea AL
ssaippe lews ok 1e13 Y e
T SR ‘M_“__wrcw

*I0IBSIURIPE IN0A

awoy 0] yoeg

*punoj Jou sem pajsenbeu noK abed ey)

J2RIUCD B9RB]d UopenByuod
nok 105 pury paanByuoo
oy} sposoxe Jasayep snop O

ss08000000080000 piomssed

BB oo o5

M¢ 'Old

LEL0'F UOIS 18R

US 9,424,167 B2

Sheet 16 of 23

Aug. 23, 2016

O 1504 ~
Qngng ~

ESBUPEY WA ~

3uigy Auedwoy ~
IUGUDT =

[Feak gt

pinsssed ~

JENERE TS

I3qun x84 ~

BINATIG HBEG ~

7

10D piosIseg ~ u

[T

UL IUNGIoY

[hleliyg

MUY NGy
SONPLLCIUL WNSI3Y
LORBLLIO] WNDXY
UOGRGLDIU] NIy

UOIRLLSHU] IMNoI2Y

UORRLLICIUL WNCIsY

GONELLAGIUL JUNGIDY

UDHBULICIUL JUNCIY

UOBULISIUL JUROIYY
LOITLLTU] JuneY
UOIBULGHU] TUNOIY
LOIRLLUL NSy

uone

UL JNOD3y

U3

ESTE

Jauy

33

333
22303

3

sequinpy seovdaa)

A

ino
SO SRS
Ay

3poD 15eg

QnEng

SEMPAY 13

SSBIPPY Hew-3
YIg 30 318
Bureh) J5e]
JWEY 2
sjpLLay - BPUBS

3y - sA0URD

U.S. Patent

HINDISIT ORYVYNI IS

Vv "Old

US 9,424,167 B2

Sheet 17 of 23

Aug. 23, 2016

U.S. Patent

ELELTY WIEISA

moerE

Bk 7T SR

4 TS £IAT ey
fex LSRETTYTETIE sues
FY TEPTTT PTITARS ey
PO PECITT TIOTR D smeg
Vid VT PTIRASNT snp 3594 b steag Bt
pragag wanls sy e S g ey UaRELLSAT S -
safessapg
o TTOETT EI0LS priyag waisky s 10413 DOy L 3BT
Fid T T2 e WAty sz 3e5

T LTS TR PIUIASNE Poiysl Ty $eai])

g

P ITTEEY

SAEU] MOUS - DS SO PRS0 GRAR) 0y 335 1HaT

s
. 1snes

HIDYNYIA YIVD

gy "old

US 9,424,167 B2

Sheet 18 of 23

Aug. 23, 2016

U.S. Patent

ldop axeyy | | weg i eseg
newsig 2HELI0E0 80g YYor A Uuor GuNesiT YR UONBELCK] IuN0T Ty A - 5(B1Y Hua rsl
[ML FIBL Eldy foeig 50 L2815 Guneass I3y uCTBLLCIUL JLNCIYY Al - 31BWS S 4118, RS
=JINN <TWIN- <IN <TION sanie, 4863 uenii

EECIERES 2ERLIIRdE wopler gD zaeg unisLy ERie) 15%) &

Wad uswiBiwg 15BN, ERSle] HOMPUCTIIBS L JUNDIy MIN S WINES

oy e s Elital JUND2Y 3(BJY SIESINH

3NNSAYAINSD~H 01 1S lewa wopues xEB 503 4340 1N023Y 3|ewWad SIESIDEY
3ns3yansD~ [woeaisar yiews T wopuer i 0] 3D DIEN)51 INOYLW JUNCITY FL 108N

wiey i@ Les JETR AHiES SIUBLIBUNDAE) LICMSSET 135U 1 YA JUNCI 3y BT ¢

JELI0} BIEE J32uC Ut BUISA JUNGAdY Biesi 3Ty

HOMPLGT 1831 g

UOSUUGT i)

le< =< { w> >>]

S umy scigawliuny | I wesmad 3015 Kmeag oN E anres pads fady

ey o | smoy poy

S —— N«NQ
BUEGEIS AueA | DBEU223 I5ug | JUSWaryy H BlEAld

PRSI ondutsag

LSHRUUBL] WOy

BweN

oF 'Old

US 9,424,167 B2

Sheet 19 of 23

Aug. 23, 2016

U.S. Patent

IR U

£GLRAY itk

wseg vAT
weddnz sanddng

Lndgns podidng

¥3VE uATIY

16 oy

1

L

fneay

zi. ssafiospep

Sukgmeg TRL

BBLDP uMEIAn

SEESTTINTS AT € 403 WRGTTY UR BB

g erag sespy B s

Burag Sues pus wes Buddous & 1o0paid pee 1) g

s el gpn B R

B praeoseg 3acn oy - afessepy soag fes, 51 g
iRt g a3E e i - BheTL igran, Y :

s ey - 7 ouesg 353y 24y) -

ER o stersayg song AR, B

B30 943 - T 200RY5 3L 51D k4

123y sfendury & .

oy st hady s

suonnIg s3

Femyarg dne g PR ol SV RSN PRV

53567 158,

DRGEOIITET]

saicia

dnen

HHOYNYW 3E¥3 1§31

wefior muegiauey Bugsodw nmnwn}vmnu;ﬂuw sebeuey) anepepy wbeinpymeq sbovey ouwidrs

192

av ol

US 9,424,167 B2

Sheet 20 of 23

Aug. 23, 2016

U.S. Patent

[@ouey | areg

i

coneuLeIu] WNodry {a u3iu3 & [
uonewuCU o3y AN Kuss o F)

RO LR 3103UT T o fF]

- sasmoig uady o 3

voRRUOIL JUNGIYY A Ul [

oY Man 3183 Y (1

seueuzas vonnaang (&

ISRGEIRD X394T) UONRUHICHUL 30 Uyl
i)

S0LRUSIT

sdno] 5per

'L &

Butsr widoy us: go 807 30 uyof wincoze ¥3edi)

-uopdusssq

- I ewiag u 8l0id

fpeay 'SNIEIS A5ED ISAL

yoddns yoddns Ag pagipon ypws aop Ag palean

207 LS - T QUEUR2S 193] €19 m BEN

siERg

Bubsag ssey 101 (]

3y 'Old

US 9,424,167 B2

Sheet 21 of 23

Aug. 23, 2016

U.S. Patent

[AA°]

SUENE G
Joj Buyoseoas
uasym syusipelib
i0j09 joxid Joj junodoe
o0} stuyiobie asn

1X3] INOYYIM SJUBLWIDIS
10} Xapui plooay
‘sjuswsle Ajuspl

0} 1x8} Juadelpe svy)

0} sadeys 91e100ssy

sl

4

sisAjeue jaxid
asn ‘uonoalip pue
181 U} sayioads 159}
By} Ing ‘Juswae ue
puij 0} Sjie} JNOJUOD §|

sadeys |le Ajuapl
0} J0Ysua8I0s

8y} uo swyiobe
Inojuod uny

mva

N ool

Buiyoyew
uiaped [axid eia
sjusWwaje puy 1O

SINojuU0o
BIA SJUBW®
J04suaalos pui

sist”

sjuawa|3 puld

sist”

pist

eist”

ast

[loJos pue abed ay)
dOO0 ‘punojjou §i

“Buijjoios sjiym
DO eadal ‘Juasaud
ale sieq [0S §
"1x3} ayj puy o} abed
3y} YOO ‘punoj jou j|

Lsl”

1x8) 8y} 4o} Bupjooj
S9]BUIPJO0D X0q

Buipunoq jusweld
payoed 8y} YO0

(400 ueyy Is)sey
st siy}) uns Joud e

wioJ} 1xa1 ayj jo abewy

payoeo 8y} Joj yoieasg

os’

ayoeo ajeuIploo)
1sutebe sjepijea 1O

uoneinbyuod
Aq ayoeo abewj
1suiebe joysusalos

SieplleA

a1 puld

605"

pue uonjesidde
ay} JO J0ysusalos

ajeosAelb
0} }l LI9AUOD

e ainyden

205 1

dals

189} 8y} Jo BWAYDS
WX sjeplie/

505 |1

uonoelaul
1o} Apeal

S| 9)B]S J9sMo.q ay}
A1on ‘1asmouq e
s1 uonesiidde auyj 4

g

s8] |y} ulyjim
sdajs |je ajelay|

Los 1
Vs 'Old

US 9,424,167 B2

Sheet 22 of 23

Aug. 23, 2016

U.S. Patent

sun. jusnbasqgns oy
BYoEd 0} UOIIBLLLIOJU|

uonoe
1Xou sy} 0} a1ela)|

ves

Jjuswele pue
‘obeuw; ‘1xa} |je aneg

zes b

dois

ay} Jaye pajeslo e)ad
aoBUSIU| UB SEM 8idy}
Buifjuen Ag pawiopad

sem uoioe auy AjLep

0es

N\

‘019 sis|
1o} (eyjeQ adepSIUY)
YD buinydeoal
pue Buijjo1os
‘Buibbeip pue
3112 ‘elep BulAjuan
‘ejep Buusjua
‘Bupyoio sjgnop
‘Bunyoljo Agq uoloe ay}
0} Buipioooe Juswa|o

34} Yim joeiaju]

gzs

9zs]

(ebueyn jo Jejusoidly)
dajs xau Ay sowl
ay] auiwvlap 0} sdals
Joud wol suoyeso]
Unm wyiuobie
yjed e asn osje
‘Jjoysuasios ay} uo
X3} a8y} Jo saoue)lsul
ajdnjnw aie alsy} §i

A

vest

(uowisod
aAlle[9Y) uopoe
ayj wuopiad o} yied
32110 158 ay) pul 0}
wypiobe yied e asn
‘$9)BUlIPIO0d puUnoy jo
Ayoiesary e si alay §|

A

dels

yoea 10} U01199}|09 Siy}

Aonb pue sjuswajs

pue }xo} 10} suoijeoo)
8]euUIpIOCD puno}

JO UO1108]|00 & pioday

zzs

g9 "Old

US 9,424,167 B2

Sheet 23 of 23

Aug. 23, 2016

U.S. Patent

&

| . Lo
ndo | | wod | | wvy
N i
| JIOMJON B

NINEINE
woi4/0]

US 9,424,167 B2

1
AUTOMATED TESTING OF AN
APPLICATION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 62/001,501, filed on May 21, 2014 in
the United States Patent and Trademark Office, the disclosure
of which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

The present invention relates to a system and methods for
automating the testing of an application system having one or
more graphical user interfaces (GUIs) by automating inter-
actions with the GUIs of the application system under test
(AUT).

BACKGROUND

Traditional automation approaches for testing software
systems require a well-trained professional test designer to
undertake a very time consuming and expensive process to
configure the automated testing software to perform a test of
the software system. In particular, the test designer must
generally be a programmer rather than a manual tester such as
is commonly used to staftf testing projects. The setup for these
traditional approaches occurs prior to any test execution and
is very costly. The maintenance of these tests is also a very
costly process of executing test cases, encountering failures,
analyzing the failures, making coding or test case updates,
and executing the test again to reach a positive run status. A
need therefore exists for streamlined and automated interac-
tion systems that can automatically test complex software
systems.

SUMMARY

The teachings herein alleviate one or more of the above
noted problems with the testing application systems having
one or more graphical user interfaces (GUIs).

In accordance with one aspect of the disclosure, a method
is provided for automatically testing an application system
graphical user interface (GUI). The method includes retriev-
ing, in a computer communicatively connected to an applica-
tion server providing the application system, a GUI page
provided by the application server as part of the application
system. A plurality of text elements of the GUI page are
identified in an image of the retrieved GUI page. A plurality of
user input objects of the GUI page are identified in the image
of the retrieved GUI page. A text element of the plurality of
identified text elements is associated with each of the plurality
of identified user input objects. A plurality of test parameter
values are retrieved, based on the text elements associated
with each of the plurality of user input objects, from a data-
base storing test parameter data. Each test parameter value of
the plurality of test parameter values is associated in the
database storing test parameter data with a corresponding text
element associated with one of the plurality of user input
objects. In turn, the application system provided by the appli-
cation server is tested by, for each respective user input object
identified in the GUI page, performing a function to: provide,
in the respective user input object of the GUI page, the respec-
tive test parameter value that is associated in the database
storing test parameter data with a same text element as is
associated with the respective user input object of the GUI

20

30

35

40

45

2

page. A response is monitored of the application system to the
providing of the respective test parameter value to each user
input object identified in the GUI page.

The user input objects on the GUI may include at least one
of'a button, a text input field, a list or combo box, a checkbox,
and a radio button. The plurality of test parameter values may
include at least one of a click command to activate a button
user input object, a text string for input into a text input field
user input object, identification of an item to select in a list or
combo box user input object, a check or uncheck command
for input into a checkbox user input object, and identification
of an item to select in a radio button selection user input
object.

The associating of a text element of the plurality of iden-
tified text elements with an identified user input object may
include associating with the identified user input object a text
element that is located proximate to or is overlapped with the
identified user input object in the GUI page.

The method may further include determining a type of a
user input object of the plurality of user input objects of the
GUI. The retrieving may include retrieving, based on the text
elements associated with each of the plurality of user input
objects and based on the determined types of the each user
input object, the plurality of test parameter values from the
database storing test parameter data, wherein each test param-
eter value of the plurality of test parameter values is associ-
ated in the database storing test parameter data with the cor-
responding text element associated with one of the plurality
of user input objects and associated in the database storing
test parameter data with the type of the one user input object.

The test parameter values “M”, “male”, “F”, and “female”
may be associated with a text element “Gender” and with a
radio button type of user input object in the database storing
test data. The test parameter value “jdoe@gmail.com” may
be associated with a text element “E-Mail Address™ and with
a text input field type of user input object in the database
storing test data. The test parameter values ‘check’ and
‘uncheck’ may be associated with a checkbox type of user
input object in the database storing test data.

The method may further include receiving, from a test
developer, test parameter values to associate with one text
element of the plurality of identified text elements, and stor-
ing the received test parameter values in the database storing
test parameter data in association with the one text element.

The test parameter values may be received from the test
developer in response to prompting the test developer for test
parameter values to associate with the one text element iden-
tified in the GUI page. The test developer may be prompted
for the test parameter values following the identifying of the
pluralities of text elements and user input objects and prior to
the testing of the application system.

The monitoring of the response of the application system
may include storing a log of monitored responses of the
application system including stored screenshots of the GUI
page following the providing of the respective test parameter
values in the respective user input objects of the GUI page.

The testing of the application system may include execut-
ing a test case comprising an ordered sequence of actions to
be performed on the application system providing the appli-
cation system. The ordered sequence of actions may include
actions to provide the respective test parameter values in the
respective user input objects of the GUI page.

The retrieving of the plurality of test parameter values may
include retrieving different pluralities of test parameter val-
ues for each of the plurality of identified user input objects.
The testing of the application system may include repeatedly
executing the test case on the application system by providing

US 9,424,167 B2

3

different combinations of test parameter values in the user
input objects of the GUI page during each execution of the test
case, and monitoring the response of the application system to
each different combination of test parameters.

The identifying of the plurality of text elements of the GUI
page may include performing optical character recognition
(OCR) of the GUI page to obtain text information of each text
element of the GUI page and to obtain location information of
each text element on the GUI page. The identifying of the
plurality of user input objects of the GUI page may include
performing contour analysis of the GUI page to identify the
presence, type, and location of each user input object of the
GUI page.

The identification of the pluralities of text elements and
user input objects of the GUI page may include automatically
scrolling through the GUI page to obtain a plurality of images
of different scrolled portions of the GUI page, and identifying
text elements and user input objects in each image of the
plurality of images of different scrolled portions of the GUI
page. The identifying of the plurality of user input objects
may include automatically expanding list or combo boxes of
the GUI page and obtaining text information from the
expanded list or combo boxes, and storing the obtained text
information from each expanded list or combo box with the
information on the presence, type, and location of the list or
combo box.

The providing of the respective parameter values in the
respective user input objects of the GUI page may be per-
formed at least in part based on the identified location of each
user input object on the GUI page.

In accordance with a further aspect of the disclosure, a
system is provided that includes a communication network, a
first application server connected to the communication net-
work and providing across the communication network an
application system having a graphical user interface (GUI),
and a second application server communicatively connected
to first application server across the communication network,
and configured to access the application system provided by
the first application server across the communication net-
work. The second application server may configured to per-
form functions to: retrieve a GUI page provided by the first
application server as part of the application system; identify,
in an image of the retrieved GUI page, a plurality of text
elements of the GUI page; identify, in the image of the
retrieved GUI page, a plurality of user input objects of the
GUI page; associate with each of the plurality of identified
user input objects a text element of the plurality of identified
text elements; retrieve, based on the text elements associated
with each of the plurality of user input objects, a plurality of
test parameter values from a database storing test parameter
data, wherein each test parameter value of the plurality of test
parameter values is associated in the database storing test
parameter data with a corresponding text element associated
with one of the plurality of user input objects; test the appli-
cation system provided by the first application server by, for
each respective user input object identified in the GUI page,
performing a function to provide, in the respective user input
object of the GUI page, the respective test parameter value
that is associated in the database storing test parameter data
with a same text element as is associated with the respective
user input object of the GUI page; and monitor a response of
the application system to the providing of the respective test
parameter value to each user input object identified in the GUI
page.

In accordance with a further aspect of the disclosure, a
non-transitory machine-readable medium is provided that
includes instructions stored therein, which when executed by

10

15

20

25

30

35

40

45

50

55

60

65

4

a processor, cause the processor to perform operations for
automatically testing an application system graphical user
interface (GUI). The operations include operations to:
retrieve, in a computer communicatively connected to an
application server providing the application system, a GUI
page provided by the application server as part of the appli-
cation system; identify, in an image of the retrieved GUI page,
a plurality of text elements of the GUI page; identify, in the
image of the retrieved GUI page, a plurality of user input
objects of the GUI page; associate with each of the plurality of
identified user input objects a text element of the plurality of
identified text elements; retrieve, based on the text elements
associated with each of the plurality of user input objects, a
plurality of test parameter values from a database storing test
parameter data, wherein each test parameter value of the
plurality of test parameter values is associated in the database
storing test parameter data with a corresponding text element
associated with one of the plurality of user input objects; test
the application system provided by the application server by,
for each respective user input object identified in the GUI
page, performing a function to provide, in the respective user
input object of the GUI page, the respective test parameter
value that is associated in the database storing test parameter
data with a same text element as is associated with the respec-
tive user input object of the GUI page; and monitor a response
of the application system to the providing of the respective
test parameter value to each user input object identified in the
GUI page.

Additional advantages and novel features will be set forth
in part in the description which follows, and in part will
become apparent to those skilled in the art upon examination
of the following and the accompanying drawings or may be
learned by production or operation of the examples. The
advantages of the present teachings may be realized and
attained by practice or use of various aspects of the method-
ologies, instrumentalities and combinations set forth in the
detailed examples discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawing figures depict one or more implementations in
accord with the present teachings, by way of example only,
not by way of limitation. In the figures, like reference numer-
als refer to the same or similar elements.

FIGS. 1A and 1B are high-level functional block diagrams
of systems of networks and servers that provide communica-
tions and processing to implement the automated testing ser-
vice.

FIGS. 2A-2D are high-level functional block diagram
illustratively showing the operation of an automation tool like
that shown in FIG. 1A.

FIGS. 3A-3K are screenshots and other illustrative images
showing operation of the automation tool of FIG. 1A

FIGS. 4A-4E are further screenshots and other illustrative
images showing operation of the automation tool of FIG. 1A.

FIGS. 5A and 5B are high-level functional block diagram
illustratively showing the operation of an automation tool like
that shown in FIG. 1A.

FIGS. 6 and 7 are simplified functional block diagrams of
computers that may be configured as a host or server, for
example, to function as one of the application servers in the
system of FIG. 1A.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth by way of examples in order to provide a

US 9,424,167 B2

5

thorough understanding of the relevant teachings. However, it
should be apparent to those skilled in the art that the present
teachings may be practiced without such details. In other
instances, well known methods, procedures, components,
and/or circuitry have been described at a relatively high-level,
without detail, in order to avoid unnecessarily obscuring
aspects of the present teachings.

The various methods and systems disclosed herein relate to
the automated testing of complex software systems. Systems
and methods are provided which use optical character recog-
nition (OCR), pattern matching, image matching, positional,
and other visual and shape detection algorithms to learn a
graphical user interface (GUI) of a software application with
the intention of interacting with it repeatedly as a user would
for the purpose of test automation.

The automated test system performs learning activities and
repeatable actions. The learning activities and repeatable
actions are performed by analyzing images of the GUI to
identify components of the GUIs without requiring access to
the programming code used to generate the GUI. For
example, the automated test system is able to recognize com-
mon GUI objects or fields configured to receive user input
such as buttons, text fields, list and combo boxes, checkboxes,
radios; and uncommon objects or fields such as tables, grids,
static text, images, and others based on screenshots (or other
images) of the GUIs. The system then gathers visual infor-
mation about the current state of these user input objects. For
example, the state is the current presentation of a GUI user
input object, such as an indication of whether a checkbox is
checked or unchecked, whether a text field contains data
inside itself or not, whether a field is editable or read only,
whether a field is required or not, or the like. The user input
objects are generally GUI fields or objects which are visually
presented to a user and allow a user to manipulate the infor-
mation inside the fields. The GUI fields or objects form part of
the GUI interface of an application system. The automated
test system interacts with the user input objects by following
the patterns a user would follow to interact with the objects,
such as by clicking buttons, selecting items, entering data,
and checking/unchecking checkboxes. Specifically, the auto-
mated test system interacts with the user input objects in
accordance with test parameters outlined in each of a plurality
of'test cases or test scenarios (e.g., the automated test system
may check a checkbox in one test case while leaving it
unchecked in another test case, in accordance with the test
parameters of different test cases). The automated test system
stores GUI data including the accumulated knowledge
regarding the user input objects and when the objects or
similar objects/fields are presented by the system such that
the system is able to repeat the actions which were learned. As
such, rather than requiring users or testers to capture object
and field properties and information and define the interac-
tions up front, the system automatically captures the objects’
location details and interprets the actions required based on
knowledge gathered and learned about the objects and based
on automated interactions of the system with the user input
objects. The system can thus automatically determine object
type, acceptable values, and other learned behaviors. The
system will also store the learned capabilities, states or
default values of the user input objects or fields, and make the
objects/fields and associated capabilities available to testers
for creating test scenarios and test cases during test develop-
ment.

As an example, when the automated test system encounters
a checkbox it will learn that the user input object is a check-
box and store the location, logical name of the object, and
attached text of the checkbox for later access by testers. The

15

20

25

35

40

45

50

55

6

automated test system also stores the object type capability
information indicating the possible ways in which a user can
interact with this object type. In the example of a checkbox,
the object type capability rules can provide the option for
users to check or uncheck the box as valid values for inter-
acting with the object in test scenarios and test cases. In the
case of a list box, the system will recognize the list box (e.g.,
alist box including a list of selectable options, such as a list of
U.S. states), open it and obtain the values listed in the box, and
store the values and make them available for testers who
encounter the object to select an appropriate value from the
stored list for their test scenario and test case.

For a process example, if testing of a new application is to
be automated and the system encounters an unknown page,
the system will automatically learn the objects on the page.
For example, the system may identify on the page a set of
radio buttons for Male and Female, and make the objects
available for creating test cases. If a user desires to select the
“Male” radio button as a step in the test case when the page
has been navigated to even if this is the first encounter of the
radio, then the system will locate the radio button based on the
“Male” qualifier, analyze the current state of the radio (e.g.,
selected or unselected) via image analysis, and perform the
correct action to ensure that the state of the radio is set to
“Male” in accordance with the step in the test case.

In contrast to the automated test system outlined herein,
existing software automation test tools require users to pro-
vide physical properties and identification information data
of'user input objects/fields on a GUI and also desired code or
action information to interact with particular fields prior to
test execution. Advantageously, the system outlined herein is
able to automatically analyze a screenshot of a GUI of an
application prior to test execution or during test execution and
learn the objects and their logical reference names without
requiring prior user definition of the fields, field types, physi-
cal properties, or actions desired. The system is able to inter-
act immediately with the fields on the application under test
given logical, visual, or relative position identifiers for the
fields.

More specifically, in earlier systems for testing software,
tools for scripting automated cases used mouse and keyboard
movements and key presses to interact with the GUI under
test. However, such scripting tools were blind of the context
of the GUI and therefore prone to error and failure if any
minor change was made to the GUI or to the testing environ-
ment. In order to improve on the prior systems and remove the
need to maintain fragile scripts, new tool technology allowed
finding objects based on physical properties such as name and
1D attributes in the code of the applications under test. How-
ever, such methods rely on having access to the code of the
application under test, such as source code or data definitions,
and therefore have limited applicability. Further, such meth-
ods rely on programmers to review the code to create test
cases, and the methods are therefore very costly and slow to
implement. Further, maintenance is difficult as programmers
are also needed to make adjustments to tests any time the
original code is modified or updated. More recently, frame-
works and other more complex architectures which mimic
full scale development projects were made to run ontop ofthe
execution tools. These frameworks rely on functional decom-
position, keyword driven, data driven, and business process
driven frameworks to make the maintenance easier and allow
non-programmers to create and maintain automation. Unfor-
tunately, these frameworks run on top of more complex pro-
grammer tools, and thus still require programmers and
experts to setup the projects, often taking two to four weeks or
more for each application to get it into a state ready for

US 9,424,167 B2

7

automation. Additionally, programmers are needed anytime
the test tool is not interpreting object properties correctly, or
if changes are made to the properties of objects or pages, or
new objects are added, moved, deleted, or any type of modi-
fications are made with the objects from which the test tool
has recorded in its object mapping. Furthermore, most appli-
cations require extensive workarounds with the common
market leading automation tools to work with the complex
applications created today. As a result of the shortcomings of
established testing systems, it can take four to ten times
longer to automate a test case than it took to create and
execute the test initially manually. Further, the automation of
a test case using established testing systems requires a great
deal of effort for automation programmers to setup and man-
age every automation project. Because of the customizations
needed in the coding centric automation tool to recognize
each new application, and because of the need for skilled
coding resources to do this work, test automation using estab-
lished systems is only viable for regression testing or only
achieves positive return on investment (ROI) after four or
more releases.

To address deficiencies in earlier systems for testing soft-
ware, improved automated interaction systems and methods
are provided. The systems and methods include an automa-
tion tool that sees applications as users see the applications
and their GUIs, and processes the information seen in the GUI
to drive operation of the automation tool. The automation tool
searches for visible text and user input objects on the GUI
screens of applications, and then finds and identifies the asso-
ciated objects and interacts with the objects. The tool relies
only on the attached text, associated images, or relatively
positioned objects, images, or text seen in the GUI for opera-
tion without requiring access to the programming code of the
GUI. With this approach, the tool is able to reduce or elimi-
nate the need for automation test tool programmers digging
into the physical properties of objects and writing program-
ming language scripts for the test cases. Thus, there is no
longer a need to navigate the application and record scripts or
inspect elements to find physical name properties. Further, it
is no longer necessary to write code in a language and syntax
specific to every individual common test tool. The automation
tool in the present invention incorporates scanning and OCR
technology in order to see applications and their GUIs as the
testers do. The testers are thus able to start work immediately
on new applications without requiring coding resources to
setup a testing structure beforehand. Further, the testers are
able to fix test cases executed by the automation tool them-
selves even when development of the application under test
causes changes in the application under test to arise that
traditionally have been addressed by programmers. The test
cases can be created without the application code and require
no coding. With the integration of the scanning and OCR
technology, the automation tool can provide more efficient
testing for software applications and also all testers on the
quality assurance projects are able to take part in the automa-
tion testing effort.

Details of the functioning of the automation tool, as well as
of the computers and servers connected for processing and
execution of the automation tool, are shown in the attached
figures and are described in detail below.

FIG. 1A is an illustrative block diagram showing intercon-
nected servers that may be used to implement the automation
tool. As shown in FIG. 1A, the automation tool 101 may
execute on a test computer or a first application server 103 that
is communicatively connected (e.g., via wired or wireless
communication network(s) 105) to a second application
server 107 providing the application system under test 109.

10

15

20

25

30

35

40

45

50

55

60

65

8

As part of providing the application system, the application
server 107 executes the application system under test 109.
The application system under test 109 includes a GUI page
generator which, during execution of the application system
109, generates graphical user interface (GUI) pages including
user input objects such as buttons, text input fields, list or
combo boxes, checkboxes, and radio buttons used for inter-
acting with the application system. The application system
also can generate text elements, icons, graphic images or
other objects which are presented on the GUI page. In gen-
eral, a user of the application system interfaces with the
application system by providing input (e.g., text input and/or
user selections) via the user input objects of the GUI pages
such that the input can be processed by the application system
109. A GUI inputreceiver of the application system under test
109 captures and processes the received input. In some
examples, the received input is used by the application system
109 to generate further GUI pages. In our example, the auto-
mation tool 101 executing on the test computer 103 interfaces
with the application system under test 109 to identify text and
user input objects on the GUI pages, and to interface and
interact with the application system under test 109 via the
GUI pages generated by the application server 107.

An illustrative GUI page of the application system under
test 109 is shown in FIG. 3A. In the GUI page, each user input
object (e.g., 301, 303, 305) of the GUI page has one or more
text elements associated therewith, such as text labels or
attached text (e.g., 301a, 3034, 305a) indicative of the infor-
mation that should be entered by the user or indicative of the
action that will be taken in response to the user selecting or
activating the object. Generally, a text element is any text
shown near a field or user input object on a GUI page which
signify the field’s purpose to the user of the application sys-
tem. During testing of the application system 109, the auto-
mation tool 101 retrieves a GUI page provided by the appli-
cation server 107, and identifies the text elements and user
input objects of the GUI page based on an image (e.g., a
screenshot) of the GUI page. The automation tool 101 then
associates user input objects with corresponding text ele-
ments, for example based on relative position or proximity of
the text element and user input object. The text element asso-
ciated with each user input object serves as a label for the user
input object, and analysis of the type of user input object can
allow the automation tool 101 to determine the type of data
that should be inputted into the user input object. Information
on the identified user input objects, text elements, associa-
tions between the objects and text, and characteristics of the
objects are stored by the automation tool 101 in the interface
repository 110. The stored user input objects and text ele-
ments are used to identify test parameters and develop tests of
the application system 109. In turn, as part of performing
testing, the automation tool 101 retrieves test parameters
from the test parameter database 111 storing test scenarios
and test data values.

Generally, test scenarios are a set of test steps ordered in
sequence to perform a test or portion of a test in an application
system under test 109. A test scenario specifies a series of
steps without providing any associated test data; the test data
is provided as part of a test case that is associated with the
scenario. Multiple test scenarios can be placed in order to
create a test sequence and then reused in many test cases with
different associated test data to create multiple test cases of a
given test sequence. A test sequence is a flow of multiple test
scenarios which, when specific test data is supplied, com-
prises a test case. A test case is associated with test data which
returns specific results when the test case is executed on an
application system under test. Test data are input data values

US 9,424,167 B2

9

or selections that are associated with test steps and are input to
the GUI page during execution of a test case. The test param-
eters database 111 includes test scenarios, test cases, test
sequences, test steps and test data that are used as part of
executing test cases for testing the application system 109.

The particular test data values are associated with user
input objects on the GUI page based on the text element
associated with each user input object. For example, test data
values “M”, “male”, “F”, and “female” may be associated
with a text element “Gender,” and may be retrieved if a user
input object is identified as being associated with a “Gender”
text element. A test parameter value “jdoe@gmail.com” and
various other examples of email addresses may be associated
with a text element “E-Mail Address” and may be retrieved if
atext input field type is identified as being associated with an
“E-Mail Address” label. The automation tool 101 can then
perform testing by inputting into corresponding user input
elements of the GUI page various combinations of the
retrieved test parameter values for each user input element,
and by monitoring the response of the application system 109
to each inputted combination of test parameter values.

The application servers 103 and 107 may be server or other
general-purpose computers that comprise a central processor
or other processing device, an internal communication bus,
various types of non-transitory memory or storage media
(RAM, ROM, EEPROM, cache memory, disk drives etc.) for
code and data storage, and one or more network interface
cards or ports for communication purposes. The software
functionalities involve programming, including executable
code as well as associated stored data, e.g. files used for
performing functions associated with the automation tool 101
and the application system 109. The software code is execut-
able by the general-purpose computer that functions as the
application computer 103/107. Execution of the code for the
automation tool 101 by a processor of the computer platform
enables the platform to implement the methodology for auto-
matically testing an application system 109 and the associ-
ated graphical user interface (GUI) in essentially the manner
performed in the implementations discussed and illustrated
herein. Execution of the code for the application system under
test 109 by a processor of the computer platform enables the
platform to implement the methodology for providing the
application system 109 and the associated graphical user
interface (GUI) in essentially the manner performed in the
implementations discussed and illustrated herein.

FIG. 1B is an alternative representation of the intercon-
nected servers that may be used to implement the automation
tool. As shown in FIG. 1B, the automation tool 101 is imple-
mented on a test automation system (TAS) that is communi-
catively connected to the application system under test 109. A
human tester may interface with the TAS to perform manual
testing of the application system 109, and/or the tester may
oversee automated testing of the application system 109. The
automation tool 101 includes an interface scanner, an engine
for performing optical character recognition (OCR) forimage
analysis and matching, processing units for performing
reporting and verifications, learned object interactions, and
keyboard and mouse actions. Examples of OCR systems
include Abbyy and Tesseract. The automation tool 101 is
further configured for performing configuration, functioning
as an interface manager, a test data manager, a test scenario
manager, a test case designer, a test case manager, a schedul-
ing and execution manager, and for reporting. As an example,
configuration allows for OCR parameters to be defined to
direct TAS to increase the accuracy of OCR such as supplying
font or retry options, template mapping information such as

20

40

45

55

10

where text elements might occur in relation to user input
objects, and other configuration type information for the OCR
engine.

FIGS. 2A-2D are flow diagrams illustratively showing the
operation of the automation tool 101. Functioning of the
automation tool 101 will thus be described in detail in relation
to these figures.

In operation, the automation tool 101 scans or captures the
GUI page, window, screen, screenshot, or image of the appli-
cation system 109 to be tested. The scanning and capturing
can be performed by the interface scanner (see, e.g., FIG. 1B).
Once the GUI page has been captured and an image is made
of'the GUI page, the automation tool 101 proceeds to analyze,
learn and categorize all the different text elements, images,
GUI objects or other elements on the GUI interface, and save
the information in the repository 110. Specifically, the auto-
mation tool 101 performs steps 201 and 203 in response to
determining that a new GUI page has been output and pre-
sented by the application system 109. In step 201, the auto-
mation tool 101 performs optical character recognition
(OCR) on the captured image of the GUI page to identify all
text on the page and obtain location information for the text on
the page. In parallel, the automation tool scans the GUI page
to identify all user input objects (or other user interface
objects and fields) on the page in step 203. The objects iden-
tified through the scan of the page include any objects through
which a user of the application system 109 can provide input,
such as buttons, text fields, list and combo boxes, checkboxes,
radios. The objects identified through the scan can further
include other objects such as tables, grids, static text, images,
accordion menus, and the like. The automation tool 101 may
further identify which objects/fields are required fields
requiring user input, and may store the information in the
interface repository 110.

In particular, the interface repository 110 may store GUI
page level data. The GUI page level data can include one or
more of: a GUI page logical name, GUI page logical name
mapping rules, template mappings and related information,
layout templates for the interface, images of GUI pages,
images of portions of GUI pages, CMCLC ratio information,
epicenter of change (EoC) calculation information, interface
delta (ID) information, degree or delta of change used for ID
calculation, contour analysis information, pixel pattern
matching information, path analysis information, informa-
tion on timing of changes observed for ID, positional struc-
ture information, location strategies information, relative
position calculation information. The interface repository
110 may further store text element level data, including one or
more of: logical name information, associations between
objects and text, text images, text coordinates, template map-
ping OCR configuration parameters, percent accuracy
required for positive match (as it relates to OCR), and iden-
tifier data. The interface repository 110 may additionally
store user input object level data, including one or more of
template mapping information (e.g., layout templates for user
input objects), user input object mapping rules, user input
object images, object logical name information, associations
between objects and text, object type information, bounding
box information, location/position information, coordinates,
learned patterns for object interaction information, learned
action interaction, valid values for objects, default values for
objects, state of objects, required marker information, relative
position links, relative position identifiers, relative position
calculation information, default number of scrolls required to
access objects, and identifier data.

Instep 205 and 207, the automation tool 101 maps the OCR
identified text elements to the user input objects identified on

US 9,424,167 B2

11

the page, and assigns a unique logical name to each identified
object based on mapping rules. Specifically, text to user input
object mapping rules define rules to link OCR text elements to
a user input objects on a GUI image. Mapping rules include,
but are not limited to, rules to associate text contained within
an object with the object, rules to associate text adjacent to an
object with the object, or rules to associate with an object text
that is positioned relatively near the object but is not directly
adjacent to the object (in which case the rule may specify an
index or identifier, such as to the right of| to characterize the
relationship between the objet and text). Mapping rules are
defined by testers as part of configuration. For example, the
OCR text and objects can be mapped to each other based on
overlap (e.g., in the case of a text label that overlaps or is
superimposed on an object), proximity (e.g., in the case of a
text label that is placed adjacent to the object), and/or relative
position (e.g., a text that is located immediately left of, imme-
diately right of, and/or immediately above or below an object
can be associated with the object). In the example of FIG. 3A,
for example, the OCR text “First Name” 301a may be mapped
or associated with text field object 301 based on overlap. In
addition, the OCR text “Name™®” may be mapped or associ-
ated with the text field objects 301 and 307a-c based on
proximity and relative position. The OCR text “No Home
Address” 305a is mapped or associated with checkbox 305
based on proximity and relative position. Further, each object
can be assigned a unique logical name that may be based on
the OCR text associated with the object. For example, the text
field object 301 can be assigned the name “Name*—First
Name” based on the OCR texts “Name” and “First Name”
that are located proximate to and thereby associated with the
test field object 301.

Further details of the processing performed by the automa-
tion tool 101 are shown in steps 209-217. Specifically, in step
209, the automation tool 101 learns characteristics of all of
the user input objects identified on the GUI page. Learning is
an automated process and does not require any manual
actions by testers. The automation tool will click the drop-
down for combos, and check the state of checkboxes and
radios, and other activities which are a completely automated
process of learning the page elements and layout. The learn-
ing includes, for each identified user input object, determin-
ing a type of the object (step 211). The learning further
includes capturing a current state of the object (step 213),
such as capturing whether a checkbox is currently checked or
unchecked, whether a text field currently includes text,
whether a radio button is selected or unselected, or the like.

Additionally, in step 215, the automation tool 101 captures
images, coordinates, and/or location strategy for all known
user input objects and elements from the GUI page. Capturing
the location strategy of a user input object includes determin-
ing the location of the object relative to the GUI page and/or
relative to other user input objects on the page. For example,
an object may thus be identified as being aligned with other
objects or with features of the GUI page, aligned with a grid,
located in a particular cell of a table, configured to remain
adjacent to (e.g., to the right, to the left, above, or below) other
objects, or the like. In some examples, the location strategy is
determined based on the overall layout of objects on the GUI
page, and/or based on known layout templates for the inter-
face (e.g., step 225). In step 217, the automation tool 101
identifies required fields by OCR or image analysis of the
required marker. A required marker, such as the commonly
used * after the attached text of a field, indicates a required
field.

In the case of user input objects such as list boxes, combo
boxes, and lists with checkboxes embedded, the automation

10

15

20

25

30

35

40

45

50

55

60

65

12

tool 101 further causes the list or combo to open so as to
record all values included in the list or combo box (step 219).
Specifically, the automation tool 101 records all available
values which can be selected, checked, or clicked. The
recorded values are stored in the interface repository 110 in
order to make the capabilities available to users of the system
for creating test cases. More generally, the automation tool
101 scrolls through the GUI page, opens and scrolls objects
on the GUI page, expands accordions, trees, and other col-
lapsible GUI elements in order to uncover objects, text,
images, or GUI elements which are hidden by the accordion.
The automation tool 101 then captures OCR values so as to
catalog all objects and text on the GUI page (step 221). In this
way, the automation tool 101 can learn all objects on a page,
then scroll any objects with scrolls, or the entire page if
scrollbars are available and capture all the objects below the
fold of the GUI page. The automation tool 101 can further
record the number of scrolls required to access objects below
the fold (e.g., measured in number of page-length scrolls) or
inside scrollable objects like combos and lists (e.g., measured
in number of combo/list box length scrolls) in order to
improve performance during execution. As each execution
occurs, the automation tool 101 further makes updates as
needed to learn any changes which affect scrolling consider-
ations.

Once the automation tool 101 has completed its learning of
the characteristics of all objects on the GUI page, the auto-
mation tool 101 determines a logical name for the GUI page
interface (step 223), and stores all objects and their charac-
teristics in the interface repository 110 or other appropriate
database under the logical name for the page. The logical
name for the GUI page or window may be based on the text
retrieved from a title bar, a header, or a visible page name of
the retrieved GUI page. This can be based on locations given
in the template mapping of the application system under test
109 in the configuration of the TAS system. The template
mapping consists of standards for the GUI page within an
application system. For example, a template mapping could
state that the logical name for user input objects could be
found on top left of the user input object and the logical name
for the GUI page is in the title bar at the top left corner of the
page. If the template mapping is not available, then the logical
name for the GUI page could be determined by capturing the
title bar text, the URL, and any large font header with no
adjacent elements near the top of the page and the system
would choose which of the options is a concise string which
appears to be unique on pages in the application. If the titles
of'pages are the same on all screens, this is ignored. If there is
no header text in the body of the page near the top without an
adjacent element, then the final portion of the URL after the
server name would be used as the logical name and could be
manually updated by the user from the interface repository if
this name isn’t good enough. An image ofthe page would also
be available in the interface repository for the user to refer-
ence in knowing what page it is.

FIG. 3B shows an example of the GUI page of FIG. 3A in
which each user interface object has been identified and the
OCR text has been associated with each object on the page. As
shown in FIG. 3B, which represents a screen-shot from a GUI
interface of the automation tool 101, a left-hand portion of the
screen includes a list of all objects that have been identified as
part of scanning the GUI page. Each listed object is identified
along with the object type (e.g., Text Box, Check Box, List
Box, Link Button, Image Button, Link, or the like). The list of
all objects shown in FIG. 3B forms part of the information
stored in the interface repository 110.

US 9,424,167 B2

13

Further functioning of the automation tool 101 and its
scanning and learning are detailed in FIG. 2B. As shown in
FIG. 2B, the scanning and learning includes identifying all
unknown objects, including icons, and user input objects
where no logical names can be determined, and text on the
GUI page in step 231. Step 231 may be substantially similar
to step 203. Additionally, the relative position/location of
each object or text is determined in step 233 and, based on the
position/location information for all objects or text on the
GUI page, the automation tool 101 determines the positional
structure of the objects or text on the page. For example, the
automation tool 101 determines whether objects or text are
aligned horizontally or vertically with each other, whether
objects or text are centered, right-justified, or left-justified on
the page, whether objects or text are disposed according to a
grid or table, or the like. The automation tool 101 further
identifies boundaries of complex controls and data tables/
grids. In step 235, the automation tool 101 determines
whether certain objects or text are positioned relative to or
according to the position of objects or text on the GUI page,
and identifies and stores relative position links for such
objects or text. A relative position link is an element’s posi-
tion in relation to other elements on the GUI page, such as to
the right of, below, between two fields, at the intersection of
any two elements on the interface, or the like. The relative
position of one element (object or text) in relation to one or
more elements on the page and is also used to determine if the
elements are grouped such as with tables and grids or repeat-
ing dynamic element groupings on a GUI page. A relative
position link identifies a location strategy for each object or
text that is passed back to the automation system and is used
to identify and select each particular element during execu-
tion of test cases.

In one example, the relative position link can be used to
identify particular elements in illustrative Table A, shown
below. The table includes checkboxes in each of the first three
columns of the table, and each column has a different text
header that appears above the columns and above the check-
box user input objects. In order to select these fields, each
checkbox user input object would be given the logical name
of the column header of the corresponding column, and
would be identified in the interface repository for this GUI
page with a relative position link such as ‘check the checkbox
for “Edit” to the left of the value “Product C” in the name
column (or below ‘name’). The relative position rules would
find the “Product C” value, would then find the fields under
“Edit,” and would select the checkbox user input object in that
immediate left position.

TABLE A
Edit View Delete Name
O O O Product A
O O O Product B
X O | Product C

In another example, in the illustrative GUI page of FIG.
3A, the automation tool may determine that the objects 301
and 307a-c are positioned relative to each other to be aligned
horizontally with a specified spacing between each other, and
that they are aligned to be positioned on a line directly below
the text “Name*.”

As the automation tool 101 identifies objects and text on
the GUI page and determines their relative positions in steps
201-225 and 231-235, the automation tool 101 records all
interface data and objects in the interface repository 110 in

40

45

50

55

14

step 237. Once learning processing of the GUI page is com-
plete, the automation tool 101 can pass the information stored
in the repository 110 to a test automation system (TAS) in step
239 such that the information can be used to create and
administer testing of the application system 109 in step 241.

The analysis, scanning, and learning performed by the
automation tool 101 is performed continuously on the appli-
cation system under test 109 so as to scan and learn new GUI
pages and/or changes occurring in GUT pages during execu-
tion of the application system 109. As such, the automation
tool 101 can identify changes in the GUI page over time (e.g.,
changes occurring in response to a user selection, a user input,
or the like) and can record and catalog each observed change
into the interface repository 110. The diagram of FIG. 2C
illustratively shows such operation.

In steps 251 and 253, the automation tool 101 finds
expected objects and text at execution time of the application
system 109 based on location strategy. Itis possible to skip the
learning process of an AUT and for a tester to manually create
the expected OCR attached text of the fields or logical names
of user input objects within the interface repository for the
automation tool to interact with for the test execution. In cases
where the GUI page was never supplied for learning, the
automation tool 101 further scans for text, images, and
objects logically recorded by users with no prior learning
scan. Steps 251 and 253 may be similar to the scanning and
learning detailed above in relation to steps 201-225 and 231-
237.

Additionally, the automation tool 101 may perform verifi-
cation on the identified objects to ensure that the application
system 109 accepts the appropriate type of input for difterent
object types (step 259). For example, the automation tool 101
may test a checkbox by attempting to click the checkbox; the
tool may test a text field by ensuring that a label that was
overlaid over the text field (e.g., at 301a in FIG. 3A) disap-
pears when the text field is selected; or the like.

In another embodiment, the automation tool can be running
independently and continuously to constantly look for pecu-
liar or unexpected changes in an application system under
test. This could be occurring separately from the test execu-
tion process. The automation tool can be used to look for error
popup dialogs, or unexpected crashes, or error text appearing
on the GUI page. This information can be passed back in the
final report and require manual post-test execution analysis to
determine if the unexpected event was a defect, known event,
orunrelated. Ifthe user determines that the GUI page contains
new elements which should be made available for testing,
then the elements are automatically added to the interface. If
it is a known event or is something which should be ignored,
then the time/event details is captured and this event is
ignored in the post execution analysis and not prompted to the
user on a future execution of this test.

As part of the scanning of the GUI page in steps 251 and
253, the automation tool 101 may perform one of several
specialized functions. In step 255, for example, the automa-
tion tool 101 may determine when the GUI page’s interface
has changed, and may record the time at which a change is
observed. In particular, the timing of the change may be used
to determine whether the change occurred in response to any
action by the automation tool 101, for example by determin-
ing whether the timing of the observed change was synchro-
nized with an action of the automation tool 101 (e.g., a scroll-
ing action, the entering of information into a field, the
selection of a box or button, or the like). The timing may be
synchronized if the change occurs concurrently with or
shortly after the action being performed by the automation
tool 101.

US 9,424,167 B2

15

In step 257, the automation tool 101 calculates an interface
delta (ID). The ID provides a method for the automation tool
101 to determine when the GUT has changed, and to recognize
changes between a previous stored GUl image and anew GUI
image. In some examples, the ID is determined by performing
pixel analysis of changes to the interface view (screenshot,
image, page, etc.), for example to identify changes having
occurred after an action (e.g., a selection) was performed on
a GUI page. The Interface Delta is represented by a matrix of
coordinates which identity the portion of the GUI page which
changed between before and after images. For example, an
Interface Delta can be calculated to validate whether a test
step was successful. The ID is a pixel analysis which shows
coordinates of rectangles of all pixels which have changed
between the two images. This would be ignored after a major
change such as a step which scrolls the application or clicked
to a new interface.

For example, in response to determining that a change in
the interface has occurred in step 255 (e.g., in response to an
action having been performed), the automation tool 101 may
identify the changes in the GUI page that have occurred. The
changes are referenced as the interface delta (ID). For
example, the automation tool 101 may compare the current
GUI page with the preceding GUI page to identify those
portions of the page that have changed. In one embodiment,
images of the current and preceding GUI pages may be sub-
tracted from each other using pixel analysis, and non-zero
portions of the subtracted image may be identified as the ID.
In one illustrative example page shown in FIG. 3C, the auto-
mation tool 101 may identify thata change in the interface has
occurred in response to the selection of the drop-down menu
selector 310 (e.g., step 255), and may then identify the drop-
down menu 311 that was presented in response to the menu
selection as the ID (step 257). Once the ID is identified, the
automation tool 101 may perform scanning and learning steps
(e.g., steps 201-225 and 231-237) on the ID to identify objects
newly presented on the GUI page. Hence, the ID enables the
automation tool 101 to know when the GUI has changed and
recognize the new GUI if it exists in the system by finding the
logical name of new interfaces and performing pixel analysis
of changes to the interface view (screenshot, image, page,
etc.) after actions.

In some situations, the calculation of the ID may cause the
automation tool 101 to focus on secondary portions of the
GUI page. For example, the calculation of the ID may result
in the identification of a portion of the GUI page including a
banner advertisement, an animation (e.g., an animated hour-
glass icon), or other secondary content. In order to ensure that
the automation tool 101 does not unnecessarily focus on such
content of secondary importance, the automation tool 101
performs an epicenter of change (EoC) calculation in step
261. In one illustrative example shown in FIG. 3D, the auto-
mation tool 101 recognizes the “E-Mail Address” field and
location in a GUI page as the true Epicenter of Change,
despite changes having occurred in multiple other portions of
the GUI page including in background of the page. In some
examples, the EoC may be identified by the presence of
particular text or objects, by the location on the page (e.g., the
EoC is generally located in a central portion of a page), or the
like. The EoC calculation uses a path algorithm such as the
widely available A* algorithm that takes input of the prior
step coordinates on the GUI page and determines the most
likely next step coordinate area in the same direction of GUI
interaction. For example, if a prior step in a test case caused
text to be input into the E-mail Address text field in the page
of FIG. 3D, the EoC calculation will identify the portion of
the GUI page including the E-mail Address text field as the

10

15

20

25

30

35

40

45

50

55

60

65

16

EoC. The automation tool 101 may then assume that a next
step in the test case will be performed within the vicinity of
the EoC. If an object outside the EoC is the intended target of
the next step, then the test case may identify the appropriate
target of the next step to be outside of the EoC using relative
position.

Once the EoC is identified, the automation tool 101 can
determine whether the EoC includes text only and, if so, the
automation tool 101 can perform OCR on the text in step 263.
In some examples, the ID or EoC may display error text or
GUI validation messages such as those illustratively shown in
FIG. 3K. In such situations, the automation tool captures and
OCRs unexpected text, and determines whether the text was
presented in other execution runs of the application system
109 by comparing the OCR text to text recognized in prior
runs. The automation tool 101 may then flag the text as
application feedback that may require presentation to a
manual tester or other further analysis. Similarly, if an
unknown or unexpected pop-up or error dialog is detected on
the GUI page during test execution, the automation tool 101
can flag the pop-up for further analysis in a test execution
report provided to a manual tester or other test administrator.

The ID and EoC calculations (steps 257 and 261) can be
used during execution of a test of the application system 109
to identity a portion of the GUI page in which to perform an
action specified in the test parameter database 111. For
example, the calculations can be used on a GUI page includ-
ing multiple “Submit” buttons to determine which “Submit”
button should be activated. For this purpose, the automation
tool 101 may identify the “Submit” button that is located
within or proximate to the ID or EoC. In particular, the tool
may also use path analysis of prior steps in a test case to
identify the logical location at which a next step will be
performed, for example.

The ID and EoC calculations can further be used to identify
the changes which occur after actions are performed on the
application system 109 being tested, where those changes
have occurred, the degree or size of the change from the prior
GUI capture, and to filter out any minor, background, unre-
lated, inconsistent, scrolling, or otherwise non-relevant
changes which occur in the background outside of the appli-
cation system 109 being tested. The purpose of the analysis is
to understand what areas of the application 109 are taking
interaction and which dynamic areas of the application 109 or
its background can be ignored. This allows test cases to be
resilient when identical anchors are found in the test environ-
ment but the desire is to interact with only a specific one. One
example may be that a Submit button is found in 5 locations
on an interface and this location may change and even new
Submit buttons may appear in areas of the interface such as
banners, navigation frames, and advertisements; but the Sub-
mit button desired to be clicked will only be the one located in
the portion of the interface where a user is currently taking
actions. By identifying the EoC and directing new actions
logically to areas near the EoC, the automation tool 101 can
automatically determine the portion of the GUI page in which
to perform actions in such situations.

During the execution of testing of the application system
109, the automation tool 101 continuously performs relative
position calculation (step 265) to determine the position of
objects or text, similarly to the location determinations
described in steps 233 and 235 above. Relative position cal-
culation can use path analysis to determine which element fall
in the path supplied. In particular, the relative position calcu-
lation can be performed to determine whether text or objects
on the GUI page are positioned relative to each other. For
example, the relative position calculation may be used to

US 9,424,167 B2

17

identify and make available relative position links that can be
used to identify and interact with objects, text, and other GUI
elements from the GUI page with no adjacent logical text to
identify the elements, such as images or text that appears on
the interface with no associated element or label text. Data
within tables and grids can also be identified with relative
position. More generally, the relative position calculation is
used to locate elements which do not have another simple
access method. Hence, user interface objects that have asso-
ciated text mapped thereto can be skipped over for relative
position searches, and best path analysis may be performed to
locate the desired elements using relative position calcula-
tions.

As shown in the examples of FIG. 3E, the position of an
object or text can be defined relative to other objects as being
at a relative intersection of two objects (e.g., the text “$6,
350°°/Person” is located at the relative intersection of
“MyHealth Bobcat EPO” and “Annual Max. Costs™), at a
relative location between two objects that are not vertically or
horizontally aligned (e.g., the text “$12,700°%/Family” is
located at the relative intersection of “WeCare” and “Add to
Cart”), in a relative direction from a point on the interface
even if the direction is not directly in a straight line (e.g., the
text “$163°*” is located to the left relative to “IRU CO Bronze
5000/30%/HSA”), or according to a relative path or other
sequence of multiple relative location markers (e.g., the but-
ton “Add to Cart” is located below the tooth icon that is
horizontally aligned to the right of the “PPO” text that is itself
aligned to the right of the “My Health Carrier” icon).

The relative position of step 265 can further be used to
interpret table or array data, as illustratively shown in FIG. 3F.
In this regard, the automation tool 101 can automatically
identify a table or array layout template on the GUI page, and
associate column or row headers with text and objects dis-
posed within the table or array layout. In the example of F1G.
3F, for instance, the automation tool 101 identifies the table
layout including the different web table rows 331 including a
header row 331a. The automation tool 101 further recognizes
the column headers including the “Monthly Premium” and
“Plan Details” column headers, and identifies the “$1673%”
label as being the “Monthly Premium” corresponding to the
plan “MyHealth Bobcat PPO” plan since the two entries are
located in a same row of the table. Specifically, the automa-
tion tool 101 solves for the “Monthly Premium” value (red
circle) using the two red rectangle text locations so as to
obtain the text value below “Monthly Premium” and to the
left of “MyHealth Bobcat PPO”.

Using the relative position methods detailed above, the
automation tool 101 can effectively learn the interface with
repeated text, images, objects, or elements which appear on a
GUI page and identify tables, trees, grids, or dynamic
repeated sets of business objects such as multiple address
fields with identical logical names and labels on the edit boxes
for an interface. By learning these complex objects, the sys-
tem can understand the structure of an interface and of the
complex controls and data presentation in order to interact
with the correct associated text, images, and objects. As an
example, the table of FIG. 3F includes a multiline static text
field with buttons to edit the row on the far right side. If a user
requests to click the “Add to Cart” button to the right of a
particular word or text, the system will determine the correct
“Add to Cart” button even if all the other “Add to Cart”
buttons are located to the right of the word and some are even
closer to the anchor word than the one associated to the
correct row. This capability is achieved based on the automa-
tion tool 101 learning the structure of the table in the analysis
phase and knowing what constitutes a row 331 and a column

10

15

20

25

30

35

40

45

50

55

60

65

18
in the table and knowing that the correct “Add to Cart” button
for each row appears in the bottom right position prior to the
next row.

Additionally, in step 267, the automation tool 101 can also
capture identifier data in association with the data on the user
input objects. Identifier data is static text or text that appears
within a user input object or other typically important field
and stores an account number, invoice number, customer
number, or the like. The identified data is captured and stored
in the interface repository 110 in order to be later used in test
cases. As illustratively shown in FIG. 3G, the automation tool
101 recognizes account numbers, customer identifiers (IDs),
and other valuable/important information generated by the
application system 109 and saves the identified numbers and
identifiers in the interface repository when they are presented
in a GUI page during execution of a test case. The automation
tool 101 can then access the saved identifiers, for example for
use in later testing or later runs of a test on the application
system 109. The account numbers and customer identifiers
(IDs) can be identified based on associated text labels that the
automation tool 101 recognizes on the GUI page, such as the
labels “Your Account”, “Account ID”, “User ID”, or the like.

As part of the scanning and learning to identify objects and
text on the GUI page, the automation tool 101 can perform
pattern or image matching to identify particular objects and
text. For example, the automation tool 101 may perform
image matching to identify a radio button and determine
whether the radio button is selected or unselected. Examples
of various images (e.g., checked or unchecked checkboxes,
selected or unselected radio buttons, “OK” buttons, or the
like) that may be used for pattern matching or image analysis
are shown in FIG. 31. In general, pattern and image matching
can be hindered when objects or images are disposed on a
background having a gradient in color. To improve the auto-
mation tool’s ability to perform pattern or image matching,
the automation tool 101 is configured in step 269 to learn and
recognized repeated images, objects, or elements even if the
colors of the objects or of their backgrounds are slightly
different or the images have minor pixel differences. As an
example, in a table with Edit buttons on the right side which
have a slight gradient in color from one row to the next, a
simple pattern matching may fail because the Edit buttons are
not identical images even though they are logically repeated
objects. To provide improved matching performance, the
automation tool 101 performs an analysis of color hue using
a method known as CMCLC ratio. In an illustrative example
shown in FIG. 3H, the automation tool 101 is capable of
recognizing the checks in the right column despite the
changes in color of the background. In particular, the auto-
mation tool 101 knows that each row is checked even though
the background in the field has a slight gradient in color which
would cause simple image matching to fail. As such, slight
differences in coloring of image matches is ignored based on
the CMCLC ratio, thus allowing the system to detect func-
tionality with similar images even with slight visual aesthetic
differences.

The automation tool 101 can further track and identify the
location of a focus cursor, if visible, in step 271. For example,
upon being presented the GUI page shown in FIG. 3D, the
automation tool can identify that the cursor has automatically
been placed in the text field box located to the right of the
“E-Mail Address:” label upon loading of the GUI page. Upon
identifying that the cursor has been auto-focused on the text
field box, the automation tool 101 records in the interface
repository 110 the object on/in which the cursor was autofo-
cused upon loading of the GUI page. The automation tool 101

US 9,424,167 B2

19

can further identify the EoC of the page based on the location
as which the cursor was focused.

As noted, the automation tool 101 performs scanning and
learning of the GUI pages presented by the application sys-
tem 109 during each step of test case execution of the appli-
cation system 109. The automation tool 101 thereby deter-
mines all new text or objects learned at execution time (step
273). The automation tool records the interface delta (ID),
epicenter of change (EoC), and execution learned interface
information in the interface repository 110 during execution
time (step 275).

Further, as shown in FIG. 3], the automation tool 101
monitors the GUI page when actions are taken to ensure that
the correct action is taken. As such, in response to taking an
action to type “jdoe@gmail.com” into a text field associated
with the “E-Mail Address:” text, the automation tool 101
monitors the GUI page to ensure that the appropriate text is
entered at the appropriate location on the GUI page, as illus-
tratively shown in FIG. 3]J. The automation tool 101 thereby
captures changes at all points of test execution in order to
verify that after an action is taken, the application under test
109 received the action and the change expected from the
action has occurred.

The automation tool 101 is further configured for learned
action interaction, as detailed in the flow diagram of FIG. 2D.
Learned action interaction is used by the automation tool 101
to interact with complex GUI objects, both during scanning
and learning of a GUI page and during execution of a test
involving the GUI page. Specifically, the learned action inter-
action enables the automation tool 101 to identify a complex
GUI object, to scan and learn the object type capability infor-
mation of the complex GUI object, and to interact with the
GUI object so as to access all other interfaces of the complex
GUI object and scan and learn the other interfaces. During
execution, the automation tool 101 can then access an appro-
priate interface of the GUI object as part of performing an
action on the complex GUI object.

For example, in the case of a list or combo box, the auto-
mation tool 101 scans and learns the default interface of the
list or combo box. As part of scanning the default interface,
the automation tool 101 identifies the object as a list or combo
box and, in response to the identification, interacts with the
list or combo box so as to expand the list or combo box. The
automation tool 101 then scans and learns the options pre-
sented in the expanded list or combo box, and iteratively
scrolls down though the list or combo box so as to scan and
learn all options presented in the list or combo box.

In another example, in the case of an accordion menu, the
automation tool 101 scans and learns the default interface of
the accordion menu and identifies the object as an accordion
menu. In response to the identification, the automation tool
101 interacts with the accordion menu so as to expand each
item, label, or thumbnail of the accordion menu and scan and
learn the content presented in the expanded item, label, or
thumbnail.

As shown in FIG. 2D, learned action interaction begins in
steps 280 and 281. The learned patterns of interaction with
GUI objects are defined by object type, such that different
learned patterns are associated with different object types. As
such, different learned action interaction patterns can be asso-
ciated with a list or combo box and an accordion menu. In
addition to identifying the type of object on the GUI page, the
automation tool 101 determines the state of the object at
execution and adjusts state to match step requirements in step
283. For example, the automation tool 101 may determine
whether a list or combo box is already expanded, whether a
selection (e.g., a default selection) has already been made,

20

25

35

40

45

55

20

whether an accordion item is expanded, or the like. The auto-
mation tool 101 then interacts with the object in steps 285-
288. In step 285, the automation tool 101 interacts with com-
plex controls and tables/grids according to learned structure
and boundaries; in step 286, the automation tool 101 tabs to
fields which cannot be accessed with clicks or selections; in
step 287, the automation tool 101 scrolls and interacts with
accordions or scrollable objects to uncover hidden portions of
the object for interaction and verification. In each of the steps,
the automation tool 101 performs mouse and keyboard
actions (step 288) to access various parts, menus, and displays
of'the complex GUI objects.

During interactions with the GUI objects, the automation
tool 101 is designed/coded to wait and pause when necessary
s0 as to synchronize actions according to interface state (step
290). For example, the automation tool 101 may pause long
enough to ensure that the GUI page is fully loaded and
refreshed, to ensure that an interaction with the GUI page has
been registered with the application system 109, and that the
application system 109 has had sufficient time to respond to
the interaction (e.g., by showing a list of options in an
expanded list or combo box, by scrolling through a GUI page
in accordance with a scroll action, or the like). The automa-
tion tool 101 further performs verification types during inter-
actions, and may cycle through interactions if a failure is
detected (step 291). In one example shown in FIG. 3], the
automation tool 101 may perform verification that the text
“jdoe@gmail.com” was properly entered in a text field box in
response to an action of the automation tool 101 by scanning
and learning the GUI page after the action is performed. If a
failure is detected (e.g., the incorrect text was entered), the
automation tool may cycle through the action steps to ensure
that the action is performed.

While performing each step of the learned action interac-
tion, the automation tool 101 can thus perform an action (e.g.,
in steps 285-288) and perform verification that the step was
properly executed (e.g., steps 290-291). If the step is deter-
mined to have been properly executed, the automation tool
updates the Pass/Fail status of the step to a pass (step 293). If
a step (or set of steps/actions) is determined not to have been
properly executed, the automation tool 101 repeats the step
(or set of steps/actions) and, upon repeated failure, updates
the Pass/Fail status of the step to a fail. The automation tool
101 then updates required post execution verifications in step
294, and if the steps were performed during a test execution,
the automation tool 101 sends results back to the test auto-
mation system (TAS) in step 295.

As part of performing the learned action interaction, the
automation tool 101 uses interface delta (ID) and epicenter of
change (EoC) calculations to capture new objects and text
presented in response to interactions, to identify potential
defects, or to perform post execution verifications (step 296).

Once the learned action interactions are completed during
a scan and learn procedure, the automation tool 101 can
present all new acquired interface information and test results
to users of the TAS for use in designing and executing tests of
the application system 109. Further, the automation tool 101
can access the acquired GUI objects during execution of a test
of'the application system 109, including GUI objects and text
that are hidden within a complex GUI object, so as to interact
with the GUI objects during the execution of the test.

The scanning and learning of GUI pages of the interface of
the application system 109 by the automation tool 101
enables the automation tool to automatically populate the
interface repository 110. Once populated, the interface
repository 110 stores information on each GUI page of the
application system 109, including detailed information

US 9,424,167 B2

21

regarding each text and object on each GUI page. The auto-
mation tool 101 can then be used to create customized test
cases for interacting with the application system 109, and/or
the automation tool 101 can automatically create test cases.
The test cases are ordered sequences of test steps or actions
that the automation tool 101 should take while interacting
with the application system 109, including ordered sequences
detailing data values to enter in user input object fields, selec-
tions to make on checkboxes or list boxes, buttons to press,
files to upload or download, etc. The automation tool 101 is
configured to run through the test cases, and to save the
resulting data (e.g., images of the resulting GUI pages and of
the OCR text retrieved from the GUI pages) in a test case
output data database 115.

FIGS. 4A-4E are screenshots of the automation tool 101
when used in a mode to create/edit a test case for an applica-
tion system 109. In particular, FIG. 4A shows a screenshot of
the automation tool 101 being used to create a test case for
interacting with the GUI page shown in FIGS. 3A and 3B. As
previously discussed in relation to FIG. 3B, the automation
tool 101 when operating in the scanning and learning mode
populates the interface repository 110 with information on all
objects and text found on the GUI page. The lefi-hand section
of FIG. 3B shows an interface which includes the list of all
objects identified in the “Create Account—Individual &
Families” section of the GUI page. Each object is stored in the
repository 110 with detailed information on the object,
including information on the GUI page and portion of the
GUI page in which the object is located. In particular, the
repository 110 stores for each object the object type, the OCR
text associated with the object, and the relative position of the
object with respect to the OCR text (e.g., overlapping, above,
below, or the like). When used in the test creation/editing
mode, the automation tool 101 may present to a user menu
options such as those shown in FIG. 4A. In a left-hand portion
of the interface, the automation tool 101 provides a list of all
objects or elements that were found on the GUI page of the
application system 109, and whose information was stored in
the interface repository 110. The list of all objects or elements
found on the GUI page is provided to enable the creation or
editing of test scenarios including actions to be performed on
the objects or elements. As such, in a right-hand portion of the
interface, a user can create an ordered sequence of actions to
be performed (see “Action” column), and identify the inter-
face element on which the action should be performed. Spe-
cifically, the user selects the interface element and drags and
drops the element in the order desired for the test scenario.
Once the user has finished creating the test scenario, the test
scenario is stored in the test parameter database 111. When
executing the test cases with are created with these test sce-
narios, the automation tool 101 searches for each element
having an associated action on the GUI page, and performs
the action associated with the element as specified in the test
cases. In some examples, the interface also allows a user to
create logical elements and data for test cases for application
systems under test which are unavailable or have not yet been
encountered for learning by the automation tool.

Each test case includes a sequence of actions to be per-
formed on GUI pages ofthe application system 109. Each test
case is associated with one or more test case datasets 114
stored by the automation tool 101 and including data for use
when executing the test case—including text to insert or type
into the text fields identified in the test case, selection to make
in radio boxes and list or combo boxes identified in the test
case, and the like. FIG. 4B shows a data manager that is used
to generate various datasets for association with different test
cases. Each row in the data manager corresponds to a dataset

10

15

20

25

30

35

40

45

50

55

60

65

22

storing data for use in a test case. FIG. 4C shows a screenshot
of the data manager showing one particular “Account Infor-
mation” dataset for use with the test case created/edited in
FIG. 4A. As shown in FIG. 4C, the dataset includes data
values for use in multiple different executions of the test case.
Specifically, each row of the dataset includes a set of values
for use in one execution of the test case, and each column of
the dataset includes values to be entered into a particular
object/element of the interface of the application system 109.
For example, column “A” indicates whether the radio button
“Gender—Male” should be selected in each different dataset;
row “3” includes values to be entered in one execution of the
test case, including values to ensure that the radio button
“Gender—Male” is selected/clicked and a first name “Bill” is
entered in the “First Name” text field. Blank values indicate
that no action should be taken with respect to a particular
object/element (of the associated column) in a test dataset.

As shown in FIG. 4C, a test dataset can include multiple
rows each including a different set of values to be used in the
execution of a test case. Thus, execution of the test case based
on the test dataset will result in the test case being executed
multiple times such that each set of values can be tested. As an
example, a test dataset can be stored in a test data matrix in
which columns correspond to the user input objects on the
GUI page and in which different rows correspond to different
test conditions or different types of actual test data that can be
entered on the GUI page. Each cell of the matrix thus stores an
input value corresponding to a user input object to be used in
executing a test condition corresponding to the particular row
of the cell. A dataset is automatically created for every GUI
page by the automation tool. The automation tool maintains
the columns of this dataset when changes occur in the inter-
face repository representation of the GUI page.

FIG. 4D shows a screenshot of the test case manager that
forms part of the automation tool 101. The test case manager
enables users of the automation tool create, review, and edit
test cases. As shown, for example, a test case with ID=3
(“Verify Error Message—First Name missing” may be asso-
ciated with the dataset values shown in line 5 of the table of
FIG. 4C, such that executing of the test case with ID=3 will
cause the test case shown in FIG. 4A to be executed using the
dataset values shown in line 5 of the table of FIG. 4C.

In order to create test cases, users access an interface of the
automation tool 101 such as that shown in FIG. 4E. The
interface of FIG. 4E shows available test scenarios for test
steps on the left, and the test case flow as created by the user
on the right. The user can drag and drop scenarios, then
associate data. The scenario details are expanded on the leftto
show in detail the steps involved in executing the scenario. As
shown, the execution can include verification steps (e.g.,
“Verify: My Account Information™) as well as action steps
(e.g., “Enter: My Account Information™).

The automation tool 101 can include additional services
relating to the execution of test cases on an application system
109, such as advanced scheduling and load balancing ser-
vices. In one example, a “first available” option provides that
a test case will be executed on the next available machine/
computer/server; alternatively, the user can select a specific
machine/computer/server to execute a test case. The automa-
tion tool 101 can also execute test cases on a fixed schedule,
a recurring schedule, for a specified number of iterations (or
repeated continually for a given time period), or the like.

FIGS. 5A-5B are flow diagrams illustratively showing the
operation of the automation tool 101 during execution of a
test case on the application system under test 109.

The execution of the test case begins with step 501, which
is iterated for each step within the test case. On each iteration,

US 9,424,167 B2

23

operation passes to step 503 in which the automation tool 101
verifies that a browser through which the application system
109 is accessed by the automation tool 101 is ready for inter-
action. Note that while the application system 109 can be
accessed through a browser (e.g., in the case of a web-ori-
ented application system 109), the automation tool 101 can
also be used to interface with other types of application sys-
tems. In embodiments in which a test case is stored as an
extendable markup language (XML) file, the automation tool
may validate the XML schema of the test in step 505.

The automation tool 101 captures a screenshot of the GUI
interface of the application system 109 and optionally con-
verts the screenshot to grayscale in step 507. The automation
tool 101 optionally converts the application screenshot to
grayscale in order to improve the OCR capture accuracy by
eliminating colored text inaccuracies. In turn, the automation
tool 101 processes the grayscale image. First, the automation
tool seeks to find all text in the image. While the automation
tool 101 can use OCR of the captured screenshot image to
retrieve text elements on a GUI page, the automation tool 101
may more efficiently retrieve text from the image by compar-
ing the image to stored images—such as a stored image of the
same GUI interface page which was stored during scanning
and learning of the GUI page. During the learning process or
prior test execution runs, an image of the OCR text can be
saved after the automation tool OCRs the GUI page and gets
all text and coordinates of the text. Finding and matching an
image of the text element on the GUI page results in better
performance than redoing an OCR of the GUI page on a
subsequent execution run of the test. The logic is that the next
test execution run will be similar to the prior test execution
run, so the automation tool is able to find the user input object
by cached image, not requiring a new OCR for each execution
run. Ifthe automation tool can’t find the image, then it will be
re-OCR or look for the user input object by relative position
or another location strategy. As such, in steps 509-511, the
automation tool 101 validates the screenshot against an image
cache by configuration, and searches for the cached image of
the text from a prior test execution run, and retrieves the OCR
results from the prior run if a match is found. If no match is
found, the automation tool performs OCR of the GUI page to
find the text element, and repeats the OCR while scrolling
through the page if scroll bars are present in the image.
Additionally in step 512-514, the automation tool 101 can
validate the image against a coordinate cache of coordinates
of'text elements from the GUI page (e.g., a coordinate cache
established during scanning and learning of the GUI inter-
face), and use the coordinate cache to perform OCR within a
bounding box, an area around the user input object which
contains the actual GUI user input object and text element,
established according to the stored coordinates. If no match is
found, the automation tool performs OCR of the GUI page to
find the text element, and repeats the OCR while scrolling
through the page if scroll bars are present in the image.

Additionally, the automation tool 101 seeks to find all
objects in the image. For this purpose, in steps 515-517, the
automation tool 101 finds screenshot elements/objects via
contour analysis (e.g., as shown and described in relation to
FIG. 3B), for example by running contour analysis algo-
rithms on the screenshot to identify all shapes. Contour analy-
sis is a computer vision technique which can be used to
determine objects found on a GUI page. An example of con-
tour analysis is a technique used by the OpenCV library.
Specifically, contour analysis includes an analysis of colors
and gradients and how these gradients map to single user
input objects shown on the GUI page. The automation tool
101 then associates shapes to their adjacent text to identify

10

15

20

25

30

35

40

45

50

55

60

65

24

elements, and records an index for elements without text.
Alternatively or additionally, in step 518-520, the automation
tool 101 finds elements via pixel pattern matching. In cases in
which contour analysis does not perform well with an appli-
cation system under test or fails to find expected user input
objects, the automation tool can perform direct pixel analysis
to determine the lines found on a GUI and find rectangles and
squares which are assumed to be the user input objects or text
elements. The automation tool performs pixel match and then
follows the pixel match in the direction of the line to find the
rectangles. Additionally, if contour-analysis fails to find an
element during test execution, the automation tool 101 can
rely on the data stored in the interface repository 110 and
associated with the GUI page to identify a GUI object or
element. For example, the automation tool can use pixel
analysis combined with the stored information on the direc-
tion and offset between the text and the object/element to
locate the object/element. Throughout execution, the automa-
tion tool 101 can use algorithms (e.g., CMCLC ratio) to
account for pixel color gradients when searching for ele-
ments. CMCLC is a known and widely used algorithm that
allows systems to ignore minor gradient differences in images
that are being matched on a GUI. For example in FIG. 3F, the
‘Add to Cart’ button can be found on each row of a table using
CMCLC even though the GUI page has a slight background
gradient difference on each row. CMCLC can be used to
recognize that these are all ‘Add to Cart’ buttons and not
individually different buttons.

While the above discussion has focused on identifying the
presence and location of text and GUI objects/elements using
OCR and contour detection, the automation tool 101 also
scans the GUI page for other interface elements and images.
In particular, the automation tool 101 can store a database of
images to be matched, such as images of known icons that the
automation tool 101 can search for on a GUI page. The
automation tool 101 can thus additionally be operative to find
such icons on the GUI page, and to report the identity and
locations of matches on the GUI page for use in future steps
of GUI page scanning and learning and/or of test case execu-
tion.

By locating all text and objects/elements on the GUI page
(e.g., in steps 509-520), the automation tool 101 establishes a
collection of coordinate locations found for all text and
objects/elements on the page (step 522). The collection of
coordinates is used by the path algorithm to find the relative
position of elements or determine the EoC. The collection of
coordinate locations can be referenced in each subsequent
step to determine the location of various elements on the GUI
page. In cases in which a hierarchy of coordinates is used
(e.g., when relative position coordinates are provided in a test
case), a path algorithm can advantageously be used to find the
best click path to perform a particular action that may be
outlined in the test case (step 524). In cases in which a screen-
shot includes multiple instances of same text or label, the
automation tool 101 may also use a path algorithm to identify
locations of the same text/label that are the most likely to
correspond to the appropriate text/label (step 526). For
example, the automation tool 10 may identify the text/label
that is closest to or that is positioned at an appropriate location
relative to a text, label, object, or element referenced in a prior
or following step. For example, the “Submit” button that is
located to the right of or below an object/element used in a
preceding step may be selected as the most likely “Submit”
button. More generally, the automation tool may use epicen-
ter of change (EoC) calculations as outlined above to deter-
mine the appropriate text/label on the GUI page.

US 9,424,167 B2

25

In turn, in step 528, the automation tool 101 interacts with
the GUI objects/elements identified in the test case according
to the action identified in the test case and test case dataset. As
such, the automation tool 101 can interact with an element/
object according to the action specified in the test case and
dataset by clicking, double clicking, entering data, verifying
data, clicking and dragging, scrolling, and the like. The auto-
mation tool 101 may also cause lists and combo boxes to
expand as part of performing an action, so as to capture OCR
text from the expanded items and search for a desired value
(e.g., a value identified in the dataset values associated with
the test case being executed) in the expanded item. If the
desired value is not found, vertical scrolling is automatically
performed to find the value through repeated OCR. Following
execution of the action, the automation tool 528 verifies that
the action was accurately performed by computing an inter-
face delta between the GUI page captured prior to the action
and the GUI page captured after the action, and verifying that
the interface delta accurately reflects the step or action taken
(step 530).

Throughout execution of the test cases, the automation tool
101 stores all text, images, and object/element information to
cache for use in subsequent runs and for use in verification
and debugging (step 532). Among other items stored in cache,
overlay templates can be stored as part of recording where
logical names of interfaces are expected to appear for a spe-
cific application under test. In turn, as step 534, operation
returns to step 501 for execution of a next step in the test case.

Once all steps of the test case are performed, the automa-
tion tool 101 provides an execution summary report that
shows all steps including data used and screenshots of the
application from each step. The pass or fail status can be
shown for each step along with detailed information used for
debugging failed steps. When reviewing the execution sum-
mary report, a user can also access stored screenshots
obtained during execution of every step in the test case and
identifying the interface objects/elements that automation
tool interacted with during execution.

The automation tool 101 presents several notable advan-
tages over prior systems used to develop automated tests. The
automation tool 101 advantageously: (i) uses text OCR tech-
nology to find label information on screenshots of the appli-
cation being tested, along with image pattern matching and
shape pattern matching to find associated objects on the
image, and then identifies the type of object and interacts with
the object appropriately for the purpose of automation test-
ing; (ii) uses logic to understand the objects which are found
and is then able to interact with them as a user would via
computer automation for the purpose of testing; (iii) finds
objects relative to images, not just OCR text; (iv) finds objects
relative to other elements on the screen; (v) interprets the
changes which occur as the test executes, and directs new
actions to the most likely locations on the screen based on the
observed changes; (vi) understands the state of objects, such
as checkboxes checked, radios selected, lists selected, and
text fields with data filled in, and interacts with the objects
appropriately based on the current state; (vii) learns and
executes tests without prior app knowledge; (viii) interprets
the available actions for objects which are found; (ix) recog-
nizes similar objects (e.g., to automatically enter the same
information in similar fields on different pages); (x) recog-
nizes complex structures of data such as tables, grids, and
trees, and the relatively located objects associated with these
structures; (xi) finds objects based on limited and partial
information when driven from an existing test case; (Xii) is
compatible with scanning paper or pdf forms, with computer
desktop images on the desktop directly under test, and with

10

15

20

25

30

35

40

45

50

55

60

65

26

forms/interfaces accessed via a virtual network computing
(VNC) session; (xiii) performs analysis and processing at
runtime/or stores a cached ‘virtual object mapping’ of the
app; (xiv) finds and then interacts with the forms and objects
directly, not just reading them; and (xv) knows how to iden-
tify, process, and interact with object types that wouldn’t be
on paper forms, like combo boxes, trees, or the like.

The automation tool 101 can additionally be used to per-
form functions such as: (i) capture the physical properties of
the objects by initially finding them with this technology, but
use these physical properties for future executions in tradi-
tional tools to speed the execution and gain better maintain-
ability or allow export to common tools; (ii) record a video
session of a manual test execution and then generate the test
case which was run by analyzing the changes to the page and
the movement of the mouse cursor, mouse clicks, and key-
board presses; (iii) create an Interface Repository page and
object library mapping from scanning images of the pages in
an application; (iv) find and understand the same object in
different applications by learning aspects of the object such as
performing cross-browser testing by understanding each
object as it appears differently in all browsers; (v) perform
automated execution of test cases in areas that have been
changed in an application by reviewing page changes in prior
executions and suggesting or scheduling tests to execute
related to the changed interfaces; (vi) highlight areas of an
application or individual objects which do not have test cases
in the repository; and/or (vii) generate new test cases based on
learned interactions such as field masks, field sizes, static list
selections, or the like.

The automation tool 101 can be used as a step execution
driver for software test automation test case steps sent from an
automated testing framework or test automation tool. The
automation tool 101 can also capture the Interface Repository
Object Mapping of the application being tested. The system
can replace the role of traditional commercial automation
engines (such as HP QTP, IBM RFT, and others) in automa-
tion solutions where applicable. The automation tool 101
further provides a simpler and more flexible system than
existing testing tools for solutions where manual testers cre-
ate automated test cases without coding.

The automation tool 101 takes a completely different non-
invasive approach to automation where prior tools require a
look into the application object properties to find the objects
and interact with them. The prior tools’ approach results in
much higher setup costs and longer timeframes for setup of
such other tools in comparison to the automation tool detailed
herein. The prior tools often require experts who are program-
mers which are expensive and difficult to find in the testing
market, and the maintenance of the prior tools is also very
expensive and must be performed by these coders. This dis-
closure thus describes a more user friendly tool which can be
used by non-coders, has less setup costs, and less mainte-
nance costs.

The automation tool 101 generally performs recognition of
a page as part of its operation. In some situations, the auto-
mation tool 101 must access portions of a webpage that are
not currently visible in order to complete the testing. As such,
the automation tool can automatically scroll down on a list to
find objects, or scroll down through a list of objects within a
list box, in order to identify all objects (and listed values/
options in a list box) for future use in creating and executing
tests.

Various additional features of the automation tool 101, and
of the test computer executing the automation tool 101, are
outlined throughout this disclosure. In particular, the automa-
tion tool may be used as part of a system for scanning an

US 9,424,167 B2

27

application system 109, learning its aspects, and making the
captured information available to a test automation system
(TAS) where users build test cases which execute repeatedly
against the application system 109 being tested.

The automation tool 101 may further be used to implement
any of the methods outlined above based on the following.

The automation tool 101 can learn GUI windows, pages,
dialogs, screens, palette windows, frames, or other interface
objects which contain GUI elements by analyzing the image
of'the GUI and identitying the rectangular border, title text at
the top left, icons for closing or maximizing in the top right,
a header or menu bar under the title, content for the window
in the middle under the menu bar, scroll bars on the right side
for vertical scroll and on the bottom for horizontal scroll, or a
status bar at the bottom. The automation tool 101 can further
scroll through the interface so as to capture the entire body of
a GUI page and make elements and their scroll locations
available to the test system. During test execution, the auto-
mation tool 101 can navigate through the GUI page and
interact with objects therein based on the scrolling data.

The interactions of the automation tool 101 with various
types of GUI objects are described in more detail below.

With regard to Edit boxes, the automation tool 101 can
analyze the image of a field and identify adjacent text or
internal text which is a logical name for a generally rectan-
gular shaped control. The automation tool 101 can determine
if the edit box is single line or multiline, and whether the field
is a required field. The automation tool 101 can further iden-
tify the field even if data has been entered and has overwritten
the logical name of the field. The automation tool 101 can
determine the character mask and field length for the field
when data is entered for testing, for example by clicking into
the field, selecting all text (so as to select text that may be
visibly truncated in the field display), copying the text to a
clipboard in the operating system, and verifying the text from
the operating system clipboard.

With regard to Hyperlinks, the automation tool 101 can
analyze the text and image of a field for the intention for
clicking the text from a test case to determine the field is a
link. The automation tool 101 can also identify links by find-
ing text of a different color than the surrounding text, text
which is underlined, or text which supplies a URL in the
status bar when the mouse is hovered. The automation tool
101 may click and verify the link when supplied only a
portion of the link text or the full link text, and may further
understand the GUI interface navigated to by the system
when links are clicked and determine if the interface is stati-
cally linked.

The automation tool 101 can learn Dropdowns and Combo
Boxes by analyzing the image of the field and identifying a
dropdown icon and associated text field and logical name;
opening the dropdown by clicking the icon; analyzing the
Epicenter of Change and Interface Delta to define the list area
as expanded on the interface; performing OCR on list values
and selected value; storing the list values and scrolling the list
to obtain all values; recording the number of scrolls required
to access a value for better performance reasons; making a
determination if the list is static or dynamic based on prior
learned information; and making the list available for test
creation and editing. The automation tool 101 may also be
configured to type text directly into Combo boxes as well.

In terms of list boxes, the automation tool 101 learns List
boxes by analyzing the text and image of a field and deter-
mining if an object is a List according to the following
attributes: Lists are generally tall rectangles with list items
inside. The items can be selected or multi-selected or moved
between other lists on occasion. List items which are high-

10

15

20

25

30

35

40

45

50

55

60

65

28

lighted generally would have white text on a colored back-
ground inside the list or simply greyed. The automation tool
101 is configured to: interface with buttons between two lists
which allow moving items between the two and with scrollbar
(s) inside the list; to retrieve a logical name generally located
above the list; identifying simple elements such as check-
boxes inside the list on items; to select items, multi-select,
deselect, scroll to find items; and to verify what has been
selected even if scrolling is required, and verify all items
available in the list.

With regard to Check boxes, the automation tool 101 ana-
lyzes a field and recognizes a check box in response to finding
a small square input with adjacent identifying text. The auto-
mation tool 101 is configured to: determine a state of the
check box by image analysis for checked, unchecked, or triple
checked; identify check boxes inside other larger elements
such as lists, grids, tables, and trees; identify adjacent text as
the logical name of the check box, and use the entire text or a
portion of the text to interact with the check box; and verify
the state of the check box by performing image analysis
primarily and image match secondarily.

The automation tool 101 recognizes Radio Buttons by
analyzing a field and finding a small circular input with adja-
cent identifying text. The automation tool 101 is configured
to: determine the state of the radio by image analysis for
selected or unselected; identify adjacent text as the logical
name of the radio, and optionally to use the entire text or a
portion of the text to interact with the radio; verify the state of
the radio by performing image analysis primarily and image
match secondarily; group Radio Button Groups by identify-
ing the spacing and Relative Position of adjacent radios with
no separating text or objects, analyzing the current selection
in the radio group, and understanding how to select each
individual radio based on its logical name or associated text,
image, or object identifier. The automation tool 101 may
recognize that radios always appear in pairs or larger groups.

Buttons are recognized by analyzing the field as generally
a rectangle with colors different than the Interface back-
ground and with logical text inside the control. The automa-
tion tool 101 is configured to: read the button text, click the
button, and verify the Interface Delta and Epicenter of
Change after the action; verify the logical text value and also
whether the control is enabled or disabled; and verify the
control selection primarily by OCR, then by image match.

The automation tool 101 learns Text Labels on a GUI page
by OCR. The automation tool 101 is configured to verify the
full or partial text by triple clicking the mouse to select the text
or clicking and dragging the mouse to select the text, copying
it to the operating system clipboard, and verifying it from the
clipboard primarily; or verification via OCR secondarily; or
image match verification as a final result. The automation tool
101 is further configured to: associate the Text Labels as
Logical Names of their adjacent and associated controls;
recognize Labels separately from Static Text not associated to
GUI elements; and identify controls by Text Labels for local-
ized applications in languages other than the base language
by using a label text mapping dictionary with translation
entries for text in each language.

The automation tool 101 identifies Static Text on an Inter-
face by OCR. The automation tool 101 is configured to: verify
the full or partial text by clicking and dragging the mouse to
select the text, copying it to the Windows clipboard, and
verifying it from the clipboard primarily; or verification via
OCR secondarily; or image match verification as a final
result.

The automation tool 101 recognizes Cycle Buttons by ana-
lyzing when a same button on a same interface changes its

US 9,424,167 B2

29

presentation text when clicked multiple times, or when the
button has a dropdown like icon on the button but it is not a
dropdown and rather cycles the button text. The automation
tool 101 is configured to: read the button text, click the button,
read the text again, and repeat clicking until the desired value
is displayed; cache the number of clicks required to achieve
the desired value; return all the valid values to the Test Auto-
mation System for selection by users; verify the selected
value and also whether the control is enabled or disabled; and
verify the control selection primarily by OCR, then by image
match.

The automation tool 101 recognizes Grids, Tables, and
Web Tables by identifying structure in position and alignment
of displayed text, images, or elements on a GUI interface. In
particular, one or more of the following structures may be
identified: tables contain Headers which separate the columns
and Rows of objects or data with each cell under a column
separated by whitespace or horizontal and vertical lines; the
values are generally right, left, or center justified to the Head-
ers; rows may be all the same color, or may have an alternating
background color; the Table may or may not have pagination
or scroll bars; the Table may have a logical name which
identifies it above it, or if only one table is found on the
Interface, then the logical name may be implied from the
Interface name. The automation tool 101 is configured to:
allow interacting with all the elements in the table, for veri-
fying all or any value(s) in the table, for finding values based
on other values in columns or rows and generally the ability to
use all the Relative Position identifiers to find and interact
with the Table data and objects.

The automation tool 101 recognizes both vertical and hori-
zontal Scrollbars and learns how many scrolls are required to
reach a desired element, text, or image on a GUI interface.
Some Interfaces are dynamic in size and thus will not have
this caching enabled. The automation tool 101 is configured
to: click the scroll arrows to advance a line, click inside the
field next to the arrows to advance a page, click at a percent-
age of the total scroll distance, or click and drag from one
location to another. The tool can quilt together all GUI page
images of a scrollable Interface to form a larger image of the
entire Interface without scrolls. The tool can further use page
up, page down, right, left, up, down arrow keys on the key-
board after clicking into the interface to scroll the Interface.

As part of scanning and learning of an interface, the auto-
mation tool 101 can further hover a mouse cursor over text,
partial text, images, partial images, images with percentage
accuracy parameters, objects, coordinates, and relative coor-
dinates on an Interface. The automation tool 101 can perform
any of the click actions after the hover, or move and hover the
mouse to another desired location in a series of hovers as
when navigating an on-hover menu on a GUI.

In order to access and interact with menus, the automation
tool can further learn Menus by capturing the text via OCR,
clicking the expandable menu items, capturing the Epicenter
of Change, again recognizing the text, and storing the menu
structure and path to get to each menu item in the interface
repository 110 and making the selections available to users in
the Test Automation System. The tool 101 can expand and
allow selection of the items in the menu, and can verify menus
via OCR primarily and Image match of the individual selec-
tions secondarily.

The automation tool 101 can learn Tree controls by iden-
tifying hierarchical views of information on an Interface via
OCR and image analysis. The identification can be made
based on one or more of the following characteristics: trees
often have lines and plus and minus expansion anchors; there
may be scrollbars around Trees; tree Items are most often left

10

15

20

25

30

35

40

45

50

55

60

65

30

justified and equal distance indented and with equal spacing
between items. The automation tool 101 can be configured to:
click, double click, right click, drag and drop, and hover Tree
items; expand and cache in the interface repository 110 item
locations; identify and interact with Objects which may be in
the Tree items such as Check boxes; and verify Tree items via
OCR primarily and Image match secondarily.

The automation tool 101 can learn Slider controls by image
analysis of the field. The automation tool 101 can be config-
ured to: select a value in the slider by clicking a percentage of
the length of the slider or dragging an anchor and dropping it
at a percentage of the length. Sometimes there are notches in
the slider length; thus, the tool 101 can be configured to allow
moving up or down by one notch. The tool 101 may further
recognize the displayed value of the slider, a percentage range
in which the slider anchor is sitting in the length, and finally
via image match.

The automation tool 101 can learn a Spinner control by
image analysis and OCR of the value. The automation tool
101 may allow clicking up and down on the arrow to increase
or decrease or cycle the spinner. The logical name may be
adjacent to the Spinner. The tool 101 may increment, decre-
ment, or enter a value directly into the display field of the
Spinner if allowed.

The automation tool 101 can learn a Tab control via image
analysis and OCR. Tabs are clickable areas on an Interface
which are grouped adjacent and allow switching the Interface
to other primary views. Tabs may have lines or rectangles
which separate them. Tabs are found on the edges above,
below, to the right, or left of a containing rectangle or square
with other objects inside. Tabs may have an “X” on them
which allows closing the Tab. The Tab may have an icon or
simply text which is the logical name of the tab and the OCR
text to click. Inactive tabs are shown as greyed and the active
tab is not greyed and has its bounding rectangle missing the
portion which touches the main content area. The tool 101
may allow clicking Tabs and verifying they take focus, and
may verify Tabs through OCR, image analysis, and image
match.

The automation tool 101 can learn a Toolbar control via
image analysis and OCR. Toolbars are buttons which appear
adjacent and within a group of Relative Position to each other.
The tool 101 can recognize text, individual images or icons,
and objects or elements in the Toolbar and make these avail-
able for user selection in the Test Automation System. Ele-
ments of the Toolbar can often be separated by the back-
ground color of the Toolbar, and the Toolbar generally is
separated by background color of the Interface background.
Toolbars are often found directly underneath Menu bars at the
top of the Interface. There may be vertical or horizontal lines
which separate the Toolbar buttons. The tool 101 identifies
Toolbars which are non-modal pop-out dialogs which can be
moved around the desktop.

The automation tool 101 can learn a Ribbon control which
is a set of toolbars organized by Tabs such as in all of the top
Microsoft Office products. Ribbons contain icons, text, and
elements, and have areas which can be dropped down to
reveal menu like information. The tool can verify elements of
Ribbons via OCR, image analysis, and image match.

The automation tool 101 can learn an Infobar which is a
non-intrusive/non-critical information bar which generally
appears at the top of a page or near a control and sometimes
displays only temporarily to show information or allow
actions, but does not require immediate action. These are
often seen on browsers to show security information or as
feedback on GUI validation errors. The tool 101 recognizes
the text and any objects or images in these Infobars, and can

US 9,424,167 B2

31

interact with the bars or pass back their existence in a test
report for addition to the object mapping in the Test Automa-
tion System or for post execution verifications. Similar pro-
cessing can be used to learn status bars. For example, the
automation tool 101 can further learn Status bars by image
analysis, OCR, or image matching; can read the status bars if
text is available, analyze the percent complete, and verify the
status; and can synchronize test execution with status bar
completeness if status bars are used in the application under
test.

The automation tool 101 can learn Accordion controls by
image analysis or image matching. Accordions allow expand-
ing, focusing, or hiding features or portions of an Interface.
Users are able to click into the accordion or click the plus or
minus type anchors to expand or contract the accordion. The
tool 101 can interact with Accordions in order to expand all
and capture all the various text, images, and elements which
appear on Interfaces, and can cache the expansion needs in the
interface repository 110 for accessing the GUI elements.

The automation tool 101 can learn Tooltips by hovering the
mouse, capturing the Interface Delta and Epicenter of
Change, and then recognizing the Tooltip with text OCR. The
tool can verify Tooltips by full or partial OCR of the text
primarily, or Image match secondarily.

The tool 101 can further identify the cursor on a GUI if
visible and be able to tab to a particular field starting from the
position of the cursor and tabbing until the desired field is
reached.

The tool 101 can pause the test execution until certain text,
image, or object is visible and enabled on the GUI interface.

The tool 101 can further identify unknown GUI elements
on the screen and pass this information back to the Test
Automation System for identification and inclusion in the test
attributes for the system.

Aspects of the methods for automatically testing an appli-
cation system graphical user interface (GUI) outlined above
may be embodied in programming. Program aspects of the
technology may be thought of as “products™ or “articles of
manufacture” typically in the form of executable code and/or
associated data that is carried on or embodied in a type of
machine readable medium. “Storage” type media include any
or all of the tangible memory of the computers, processors or
the like, or associated modules thereof, such as various semi-
conductor memories, tape drives, disk drives and the like,
which may provide non-transitory storage at any time for the
software programming. All or portions of the software may at
times be communicated through the Internet or various other
telecommunication networks. Such communications, for
example, may enable loading of the software from one com-
puter or processor into another, for example, from a manage-
ment server or host computer into the computer platform of
the computer that will perform the automated testing. Thus,
another type of media that may bear the software elements
includes optical, electrical and electromagnetic waves, such
as used across physical interfaces between local devices,
through wired and optical landline networks and over various
air-links. The physical elements that carry such waves, such
as wired or wireless links, optical links or the like, also may be
considered as media bearing the software. As used herein,
unless restricted to non-transitory, tangible “storage” media,
terms such as computer or machine “readable medium” refer
to any medium that participates in providing instructions to a
processor for execution.

Hence, a machine readable medium may take many forms,
including but not limited to, a tangible storage medium, a
carrier wave medium or physical transmission medium. Non-
volatile storage media include, for example, optical or mag-

10

25

40

45

50

32

netic disks, such as any of'the storage devices in any computer
(s) or the like. Volatile storage media include dynamic
memory, such as main memory of such a computer platform.
Tangible transmission media include coaxial cables; copper
wire and fiber optics, including the wires that comprise a bus
within a computer system. Carrier-wave transmission media
can take the form of electric or electromagnetic signals, or
acoustic or light waves such as those generated during radio
frequency (RF) and infrared (IR) data communications. Com-
mon forms of computer-readable media therefore include for
example: a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD or
DVD-ROM, any other optical medium, punch cards paper
tape, any other physical storage medium with patterns of
holes, a RAM, a PROM and EPROM, a FLASH-EPROM,
any other memory chip or cartridge, a carrier wave transport-
ing data or instructions, cables or links transporting such a
carrier wave, or any other medium from which a computer
canread programming code and/or data. Many of these forms
of computer readable media may be involved in carrying one
or more sequences of one or more instructions to a processor
for execution.

As known in the data processing and communications arts,
a general-purpose computer typically comprises a central
processor or other processing device, an internal communi-
cation bus, various types of memory or storage media (RAM,
ROM, EEPROM, cache memory, disk drives etc.) for code
and data storage, and one or more network interface cards or
ports for communication purposes. The software functional-
ities involve programming, including executable code as well
as associated stored data, e.g. files used for the automation
tool 101 or application system 109. The software code is
executable by the general-purpose computer that functions as
one of the application servers 103 and 107. In operation, the
code is stored within the general-purpose computer platform.
At other times, however, the software may be stored at other
locations and/or transported for loading into the appropriate
general-purpose computer system. Execution of such code by
a processor of the computer platform enables the platform to
implement the methodology for automated testing of appli-
cation systems via GUIs in essentially the manner performed
in the implementations discussed and illustrated herein.

FIGS. 6 and 7 provide functional block diagram illustra-
tions of general purpose computer hardware platforms that
may be used to implement the application systems 103 and
107. FIG. 6 illustrates a network or host computer platform,
as may typically be used to implement a server. FIG. 7 depicts
a computer with user interface elements, as may be used to
implement a personal computer or other type of work station
or terminal device, although the computer of FIG. 7 may also
act as a server if appropriately programmed.

A server, for example, includes a data communication
interface for packet data communication. The server also
includes a central processing unit (CPU), in the form of one or
more processors, for executing program instructions. The
server platform typically includes an internal communication
bus, program storage and data storage for various data files to
be processed and/or communicated by the server, although
the server often receives programming and data via network
communications. The hardware elements, operating systems
and programming languages of such servers are conventional
in nature, and it is presumed that those skilled in the art are
adequately familiar therewith. Of course, the server functions
may be implemented in a distributed fashion on a number of
similar platforms, to distribute the processing load.

Unless otherwise stated, all measurements, values, ratings,
positions, magnitudes, sizes, and other specifications that are

US 9,424,167 B2

33

set forth in this specification, including in the claims that
follow, are approximate, not exact. They are intended to have
a reasonable range that is consistent with the functions to
which they relate and with what is customary in the art to
which they pertain.

The scope of protection is limited solely by the claims that
now follow. That scope is intended and should be interpreted
to be as broad as is consistent with the ordinary meaning of
the language that is used in the claims when interpreted in
light of this specification and the prosecution history that
follows and to encompass all structural and functional
equivalents. Notwithstanding, none of the claims are intended
to embrace subject matter that fails to satisfy the requirement
of'Sections 101, 102, or 103 of the Patent Act, nor should they
be interpreted in such a way. Any unintended embracement of
such subject matter is hereby disclaimed.

Except as stated immediately above, nothing that has been
stated or illustrated is intended or should be interpreted to
cause a dedication of any component, step, feature, object,
benefit, advantage, or equivalent to the public, regardless of
whether it is or is not recited in the claims.

It will be understood that the terms and expressions used
herein have the ordinary meaning as is accorded to such terms
and expressions with respect to their corresponding respec-
tive areas of inquiry and study except where specific mean-
ings have otherwise been set forth herein. Relational terms
such as first and second and the like may be used solely to
distinguish one entity or action from another without neces-
sarily requiring or implying any actual such relationship or
order between such entities or actions. The terms “com-
prises,” “comprising,” or any other variation thereof, are
intended to cover a non-exclusive inclusion, such that a pro-
cess, method, article, or apparatus that comprises a list of
elements does not include only those elements but may
include other elements not expressly listed or inherent to such
process, method, article, or apparatus. An element proceeded
by “a” or “an” does not, without further constraints, preclude
the existence of additional identical elements in the process,
method, article, or apparatus that comprises the element.

The Abstract of the Disclosure is provided to allow the
reader to quickly ascertain the nature of the technical disclo-
sure. It is submitted with the understanding that it will not be
used to interpret or limit the scope or meaning of the claims.
In addition, in the foregoing Detailed Description, it can be
seen that various features are grouped together in various
embodiments for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflecting
an intention that the claimed embodiments require more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a sepa-
rately claimed subject matter.

While the foregoing has described what are considered to
be the best mode and/or other examples, it is understood that
various modifications may be made therein and that the sub-
ject matter disclosed herein may be implemented in various
forms and examples, and that the teachings may be applied in
numerous applications, only some of which have been
described herein. It is intended by the following claims to
claim any and all applications, modifications and variations
that fall within the true scope of the present teachings.

What is claimed is:
1. A method for automatically testing an application sys-
tem graphical user interface (GUI), the method comprising:

10

20

25

30

35

40

45

50

55

60

65

34

retrieving, in a computer communicatively connected to an
application server providing the application system, a
GUI page provided by the application server as part of
the application system;

automatically identifying, based on image-analysis of an

image of the retrieved GUI page, a plurality of text
elements of the GUI page;

automatically identifying, based on image-analysis of the

image of the retrieved GUI page, a plurality of user input
objects of the GUI page;
automatically associating with each of the plurality of
automatically identified user input objects a text element
of the plurality of automatically identified text elements;

retrieving, based on the text elements associated with each
of the plurality of user input objects, a plurality of test
parameter values from a database storing test parameter
data, wherein each test parameter value of the plurality
of test parameter values is associated in the database
storing test parameter data with a corresponding text
element associated with one of the plurality of user input
objects;

testing the application system provided by the application

server by, for each respective user input object identified

in the GUI page, performing a function to:

provide, in the respective user input object of the GUI
page, the respective test parameter value that is asso-
ciated in the database storing test parameter data with
a same text element as is associated with the respec-
tive user input object of the GUI page; and

monitoring a response of the application system to the

providing of the respective test parameter value to each

user input object identified in the GUI page.

2. The method of claim 1, wherein the user input objects on
the GUI includes at least one of a button, a text input field, a
list or combo box, a checkbox, and a radio button.

3. The method of claim 2, wherein the plurality of test
parameter values include at least one of a click command to
activate a button user input object, a text string for input into
atext input field user input object, identification of an item to
select in a list or combo box user input object, a check or
uncheck command for input into a checkbox user input
object, and identification of an item to select in a radio button
selection user input object.

4. The method of claim 1, wherein the associating a text
element of the plurality of identified text elements with an
identified user input object comprises associating with the
identified user input object a text element that is located
proximate to or is overlapped with the identified user input
object in the GUI page.

5. The method of claim 1, further comprising:

determining a type of a user input object of the plurality of

user input objects of the GUI,

wherein the retrieving comprises retrieving, based on the

text elements associated with each of the plurality of
user input objects and based on the determined types of
the each user input object, the plurality of test parameter
values from the database storing test parameter data,
wherein each test parameter value of the plurality of test
parameter values is associated in the database storing
test parameter data with the corresponding text element
associated with one of the plurality of user input objects
and associated in the database storing test parameter
data with the type of the one user input object.

6. The method of claim 5, wherein the test parameter values
“M”, “male”, “F”, and “female” are associated with a text
element “Gender” and with a radio button type of user input
object in the database storing test data,

US 9,424,167 B2

35

wherein the test parameter value “jdoe@gmail.com” is
associated with a text element “E-Mail Address” and
with a text input field type of user input object in the
database storing test data, and

wherein the test parameter values ‘check’ and “uncheck’

are associated with a checkbox type of user input object
in the database storing test data.

7. The method of claim 1, further comprising:

receiving, from a test developer, test parameter values to

associate with one text element of the plurality of iden-
tified text elements; and

storing the received test parameter values in the database

storing test parameter data in association with the one
text element.

8. The method of claim 7, wherein the test parameter values
are received from the test developer in response to prompting
the test developer for test parameter values to associate with
the one text element identified in the GUI page, and

wherein the test developer is prompted for the test param-

eter values following the identifying of the pluralities of
text elements and user input objects and prior to the
testing of the application system.

9. The method of claim 1, wherein the monitoring of the
response of the application system comprises storing a log of
monitored responses of the application system including
stored screenshots of the GUI page following the providing of
the respective test parameter values in the respective user
input objects of the GUI page.

10. The method of claim 1, wherein the testing of the
application system comprises:

executing a test case comprising an ordered sequence of

actions to be performed on the application system pro-
viding the application system,

wherein the ordered sequence of actions include actions to

provide the respective test parameter values in the
respective user input objects of the GUI page.
11. The method of claim 10, wherein the retrieving the
plurality of test parameter values comprises retrieving differ-
ent pluralities of test parameter values for each of the plurality
of identified user input objects, and
wherein the testing of the application system comprises
repeatedly executing the test case on the application
system by providing different combinations of test
parameter values in the user input objects of the GUI
page during each execution of the test case, and moni-
toring the response of the application system to each
different combination of test parameters.
12. The method of claim 1,
wherein the identifying of the plurality of text elements of
the GUI page comprises performing optical character
recognition (OCR) of the GUI page to obtain text infor-
mation of each text element of the GUI page and to
obtain location information of each text element on the
GUI page, and

wherein the identifying of the plurality of user input
objects of the GUI page comprises performing contour
analysis of the GUI page to identify the presence, type,
and location of each user input object of the GUI page.

13. The method of claim 12,

wherein the identification of the pluralities of text elements

and user input objects of the GUI page comprises:

automatically scrolling through the GUI page to obtain a
plurality of images of different scrolled portions of
the GUI page; and

identifying text elements and user input objects in each
image of the plurality of images of different scrolled
portions of the GUI page; and

10

30

35

40

45

36

wherein the identifying of the plurality of user input
objects comprises:
automatically expanding list or combo boxes of the GUI
page and obtaining text information from the
expanded list or combo boxes; and

storing the obtained text information from each
expanded list or combo box with the information on
the presence, type, and location of the list or combo
box.

14. The method of claim 12, wherein the providing of the
respective parameter values in the respective user input
objects of the GUI page is performed at least in part based on
the identified location of each user input object on the GUI
page.

15. The method of claim 1, wherein the automatically
associating comprises automatically associating with each of
the plurality of automatically identified user input objects a
text element of the plurality of automatically identified text
elements based on relative positions of the text elements and
user input objects in the image of the retrieved GUI page.

16. A system comprising:

a communication network;

a first application server connected to the communication
network and providing across the communication net-
work an application system having a graphical user
interface (GUI); and

a second application server communicatively connected to
first application server across the communication net-
work, and configured to access the application system
provided by the first application server across the com-
munication network,

wherein the second application server is configured to per-
form functions to:
retrieve a GUI page provided by the first application

server as part of the application system;
automatically identify, based on image-analysis of an
image of the retrieved GUI page, a plurality of text
elements of the GUI page;
automatically identify, based on image-analysis of the
image of the retrieved GUI page, a plurality of user
input objects of the GUI page;
automatically associate with each of the plurality of
automatically identified user input objects a text ele-
ment of the plurality of automatically identified text
elements;
retrieve, based on the text elements associated with each
of'the plurality of user input objects, a plurality of test
parameter values from a database storing test param-
eter data, wherein each test parameter value of the
plurality of test parameter values is associated in the
database storing test parameter data with a corre-
sponding text element associated with one of the plu-
rality of user input objects;
test the application system provided by the first applica-
tion server by, for each respective user input object
identified in the GUI page, performing a function to:
provide, in the respective user input object of the GUI
page, the respective test parameter value that is
associated in the database storing test parameter
data with a same text element as is associated with
the respective user input object of the GUI page;
and
monitor a response of the application system to the pro-
viding of the respective test parameter value to each
user input object identified in the GUI page.

17. A non-transitory machine-readable medium compris-

ing instructions stored therein, which when executed by a

US 9,424,167 B2

37

processor, cause the processor to perform operations for auto-
matically testing an application system graphical user inter-
face (GUI) comprising operations to:
retrieve, in a computer communicatively connected to an
application server providing the application system, a
GUI page provided by the application server as part of
the application system;
automatically identify, based on image-analysis of an
image of the retrieved GUI page, a plurality of text
elements of the GUI page;
automatically identify, based on image-analysis of the
image of the retrieved GUI page, a plurality of user input
objects of the GUI page;
automatically associate with each of the plurality of auto-
matically identified user input objects a text element of
the plurality of automatically identified text elements;
retrieve, based on the text elements associated with each of
the plurality of user input objects, a plurality of test

10

38

parameter values from a database storing test parameter
data, wherein each test parameter value of the plurality
of test parameter values is associated in the database
storing test parameter data with a corresponding text
element associated with one of the plurality of user input
objects;
test the application system provided by the application
server by, for each respective user input object identified
in the GUI page, performing a function to:
provide, in the respective user input object of the GUI
page, the respective test parameter value that is asso-
ciated in the database storing test parameter data with
a same text element as is associated with the respec-
tive user input object of the GUI page; and
monitor a response of the application system to the provid-
ing of the respective test parameter value to each user
input object identified in the GUI page.

#* #* #* #* #*

